Математика ЕГЭ
Русский язык ЕГЭ
Математика 5-7
Математика ОГЭ
Физика
Кликните, чтобы открыть меню

6. Геометрия на плоскости (планиметрия). Часть II

1. Вспоминай формулы по каждой теме
2. Решай новые задачи каждый день
3. Вдумчиво разбирай решения

Центральные и вписанные углы окружности (страница 2)

\(\blacktriangleright\) Центральный угол – угол, вершина которого лежит в центре окружности.
Центральный угол равен дуге, на которую он опирается.

 

\(\blacktriangleright\) Вписанный угол – угол, вершина которого лежит на окружности.
Вписанный угол равен половине дуги, на которую он опирается.

 

\(\blacktriangleright\) Таким образом, если центральный угол \(\alpha_{\text{ц}}\) и вписанный угол \(\alpha_{\text{в}}\) опираются на одну и ту же дугу, то: \[\Large{\alpha_{\text{ц}}=2\cdot \alpha_{\text{в}}}\]


 

\(\blacktriangleright\) Вписанный угол, опирающийся на полуокружность (или на диаметр), равен \(90^\circ\).

Задание 8 #3524
Уровень задания: Равен ЕГЭ

Найдите вписанный угол, опирающийся на дугу, длина которой равна \(\frac15\) длины окружности. Ответ дайте в градусах.

Добавить задание в избранное

Рассмотрим рисунок:



Так как длина меньшей дуги \(AC\) равна \(\frac15\) длины окружности, то и ее градусная мера равна \(\frac15\) градусной меры окружности, то есть равна \(\frac15\cdot 360^\circ=72^\circ\). Угол \(ABC\) – вписанный, опирающийся на меньшую дугу \(AC\), следовательно, равен ее половине, то есть \(36^\circ\).

Ответ: 36

Задание 9 #3525
Уровень задания: Равен ЕГЭ

Дуга окружности \(AC\), не содержащая точки \(B\), имеет градусную меру \(200^\circ\), а дуга окружности \(BC\), не содержащая точки \(A\), имеет градусную меру \(80^\circ\). Найдите вписанный угол \(ACB\). Ответ дайте в градусах.

Добавить задание в избранное

Так как градусная мера всей окружности равна \(360^\circ\), то дуга \(AB\), не содержащая точки \(C\), равна \(360^\circ-200^\circ-80^\circ=80^\circ\). Так как вписанный угол равен половине дуги, на которую он опирается, то \(\angle ACB\) равен \(40^\circ\).

Ответ: 40

Задание 10 #3526
Уровень задания: Равен ЕГЭ

Хорда \(AB\) делит окружность на две дуги, градусные меры которых относятся как \(5:7\). Под каким углом видна эта хорда из точки \(C\), принадлежащей меньшей дуге окружности? Ответ дайте в градусах.

Добавить задание в избранное

Так как градусные меры дуг относятся как \(5:7\), то можно ввести обозначения: \(5x\) – градусная мера меньшей дуги, \(7x\) – большей. Тогда \(5x+7x=360^\circ\), откуда \(x=30^\circ\).
Нужно найти \(\angle ACB\). Он является вписанным и равен половине большей дуги, следовательно, равен \(0,5\cdot 7x\), или \(105^\circ\).

Ответ: 105

Задание 11 #3527
Уровень задания: Равен ЕГЭ

Точки \(A, B, C\), расположенные на окружности, делят ее на три дуги, градусные меры которых относятся как \(1:3:5\). Найдите больший угол треугольника \(ABC\). Ответ дайте в градусах.

Добавить задание в избранное

Пусть дуги \(AB=x\), \(BC=3x\), \(AC=5x\). Так как градусная мера всей окружности равна \(360^\circ\), то \(x+3x+5x=360^\circ\), откуда \(x=40^\circ\).
Из вписанных углов \(\angle ABC\), \(\angle ACB\) и \(\angle BAC\) большим будет тот, который опирается на большую дугу, то есть на дугу \(AC\), равную \(5\cdot 40^\circ=200^\circ\). Так как вписанный угол равен половине дуги, на которую он опирается, то \(\angle ABC=100^\circ\).

Ответ: 100

Задание 12 #3528
Уровень задания: Равен ЕГЭ

\(AC\) и \(BD\) – диаметры окружности с центром \(O\). Угол \(ACB\) равен \(38^\circ\). Найдите угол \(AOD\). Ответ дайте в градусах.

Добавить задание в избранное

Так как \(\angle ACB\) – вписанный угол, то центральный угол \(AOB\), который опирается на ту же дугу, что и \(ACB\), в два раза больше: \(\angle AOB=2\cdot 38^\circ=76^\circ\). Так как \(BD\) – диаметр, то угол \(BOD\) – развернутый и равен \(180^\circ\), следовательно, \(\angle AOD=180^\circ-\angle AOB=104^\circ\).

Ответ: 104

Задание 13 #3529
Уровень задания: Равен ЕГЭ

В окружности с центром \(O\) \(AC\) и \(BD\) – диаметры. Центральный угол \(AOD\) равен \(110^\circ\). Найдите вписанный угол \(ACB\). Ответ дайте в градусах.

Добавить задание в избранное

Так как \(BD\) – диаметр, то \(\angle BOD=180^\circ\), следовательно, \(\angle AOB=180^\circ-\angle AOD=70^\circ\). \(\angle AOB\) и \(\angle ACB\) – центральный и вписанный углы соответственно, опирающиеся на одну и ту же дугу, следовательно, \(\angle ACB=\angle AOB:2=35^\circ\).

Ответ: 35

Задание 14 #3530
Уровень задания: Равен ЕГЭ

Четырехугольник \(ABCD\) вписан в окружность. Угол \(ABC\) равен \(105^\circ\), угол \(CAD\) равен \(35^\circ\). Найдите угол \(ABD\). Ответ дайте в градусах.

Добавить задание в избранное

Так как вписанный угол равен половине дуги, на которую он опирается, то \(\buildrel\smile\over{CDA}\,=2\cdot 105^\circ=210^\circ\). Аналогично меньшая дуга \(\buildrel\smile\over{CD}\,=2\cdot 35^\circ=70^\circ\) (см.рис.). Следовательно, меньшая дуга \(\buildrel\smile\over{AD}\,=210^\circ-70^\circ=140^\circ\) (см.рис.). Значит \(\angle ABD\), как вписанный и опирающийся на дугу, равную \(140^\circ\), сам равен \(70^\circ\).

Ответ: 70

1 2 3