Математика ЕГЭ
Русский язык ЕГЭ
Математика 5-7
Математика ОГЭ
Информатика
Физика
Обществознание
Кликните, чтобы открыть меню

6. Геометрия на плоскости (планиметрия). Часть II

1. Вспоминай формулы по каждой теме
2. Решай новые задачи каждый день
3. Вдумчиво разбирай решения

Окружность: важные теоремы, связанные с длинами отрезков (страница 3)

\(\blacktriangleright\) Если радиус перпендикулярен хорде, то он делит ее пополам;


 

\(\blacktriangleright\) Если вписанный угол – прямой, то он опирается на диаметр;

 

\(\blacktriangleright\) Произведения отрезков хорд равны; \[\large{AO \cdot OC=BO\cdot OD}\]


 

\(\blacktriangleright\) Квадрат касательной равен произведению секущей на ее внешнюю часть; \[\large{OA^2=OB\cdot OC}\]


 

\(\blacktriangleright\) Произведения двух секущих, проведенных из одной точки вне окружности, на их внешние части одинаковы;\[\large{ OA\cdot OC=OB\cdot OD}\]


 

\(\blacktriangleright\) Отрезки касательных, проведенных из одной точки, равны;\[\large{OA=OB}\]


 

\(\blacktriangleright\) Если хорды отсекают от окружности равные дуги (меньшие полуокружности), то такие хорды равны.

Задание 15 #2768
Уровень задания: Сложнее ЕГЭ

В треугольнике \(ABC\) известно, что \(AB = 2BC\), \(\angle BAC = 30^\circ\). Найдите \(\dfrac{AC^2}{BC^2}\). Если задача допускает несколько ответов – запишите полусумму наименьшего и наибольшего из них.

Решение скрыто, так как задача находится в активном домашнем задании марафона.

Подключиться к марафону можно тут: Марафон Школково - ВКонтакте

Решение будет опубликовано 30.01.2020 в 12:00