Математика ЕГЭ
Русский язык ЕГЭ
Математика 5-7
Математика ОГЭ
Информатика
Физика
Обществознание
Кликните, чтобы открыть меню

6. Геометрия на плоскости (планиметрия). Часть II

1. Вспоминай формулы по каждой теме
2. Решай новые задачи каждый день
3. Вдумчиво разбирай решения

Окружность, вписанная в многоугольник или угол (страница 2)

Окружность называется вписанной в выпуклый многоугольник/угол, если она касается всех сторон этого многоугольника/угла.
Тогда многоугольник/угол называется описанным около окружности.

 

\(\blacktriangleright\) В любой треугольник можно вписать окружность. Ее центр лежит на пересечении биссектрис треугольника (рис. 1).

 

Площадь описанного треугольника ищется по формуле \[{\Large{S_{\triangle}=p\cdot r}},\]

где \(p\) – полупериметр.


 

\(\blacktriangleright\) Если в прямоугольный треугольник вписана окружность, \(a, b\) – катеты, \(c\) – гипотенуза, \(r\) – радиус этой окружности, то верна формула: \[{\large{r=\dfrac{a+b-c}2}}\]

 

\(\blacktriangleright\) Если в выпуклый четырехугольник можно вписать окружность, то суммы его противоположных сторон равны.
И наоборот: если суммы противоположных сторон выпуклого четырехугольника равны, то в него можно вписать окружность (рис. 2).
Центр вписанной окружности лежит на пересечении биссектрис углов.
Площадь описанного четырехугольника ищется по формуле

\[{\large{S_{\text{опис.4-к}}=p\cdot r}},\]

где \(p\) – полупериметр.


 

\(\blacktriangleright\) Если в параллелограмм вписана окружность, то он – ромб (рис. 3).

 

\(\blacktriangleright\) Если в прямоугольник вписана окружность, то он – квадрат (рис. 4).

 

\(\blacktriangleright\) Если в угол вписана окружность, то ее центр лежит на биссектрисе этого угла (рис. 5).

Задание 8 #3563
Уровень задания: Равен ЕГЭ

Сторона ромба равна \(1\), острый угол равен \(30^\circ\). Найдите радиус окружности, вписанной в этот ромб.

Решение скрыто, так как задача находится в активном домашнем задании марафона.

Подключиться к марафону можно тут: Марафон Школково - ВКонтакте

Решение будет опубликовано 30.01.2020 в 12:00

Задание 9 #3564
Уровень задания: Равен ЕГЭ

Острый угол ромба равен \(30^\circ\), радиус вписанной в этот ромб окружности равен \(2\). Найдите сторону ромба.

Решение скрыто, так как задача находится в активном домашнем задании марафона.

Подключиться к марафону можно тут: Марафон Школково - ВКонтакте

Решение будет опубликовано 30.01.2020 в 12:00

Задание 10 #3565
Уровень задания: Равен ЕГЭ

Найдите сторону правильного шестиугольника, описанного около окружности, радиус которой равен \(\sqrt3\).

Решение скрыто, так как задача находится в активном домашнем задании марафона.

Подключиться к марафону можно тут: Марафон Школково - ВКонтакте

Решение будет опубликовано 30.01.2020 в 12:00

Задание 11 #3566
Уровень задания: Равен ЕГЭ

Боковые стороны трапеции, описанной около окружности, равны \(9\) и \(12\). Найдите среднюю линию трапеции.

Решение скрыто, так как задача находится в активном домашнем задании марафона.

Подключиться к марафону можно тут: Марафон Школково - ВКонтакте

Решение будет опубликовано 30.01.2020 в 12:00

Задание 12 #3567
Уровень задания: Равен ЕГЭ

Катеты равнобедренного прямоугольного треугольника равны \(2+\sqrt2\). Найдите радиус окружности, вписанной в этот треугольник.

Решение скрыто, так как задача находится в активном домашнем задании марафона.

Подключиться к марафону можно тут: Марафон Школково - ВКонтакте

Решение будет опубликовано 30.01.2020 в 12:00

Задание 13 #3568
Уровень задания: Равен ЕГЭ

В треугольнике \(ABC\) \(AC=4, BC=3\), угол \(C\) равен \(90^\circ\). Найдите радиус вписанной окружности.

Решение скрыто, так как задача находится в активном домашнем задании марафона.

Подключиться к марафону можно тут: Марафон Школково - ВКонтакте

Решение будет опубликовано 30.01.2020 в 12:00

Задание 14 #3559
Уровень задания: Равен ЕГЭ

Периметр треугольника равен \(12\), а радиус вписанной окружности равен \(1\). Найдите площадь этого треугольника.

Решение скрыто, так как задача находится в активном домашнем задании марафона.

Подключиться к марафону можно тут: Марафон Школково - ВКонтакте

Решение будет опубликовано 30.01.2020 в 12:00