Математика ЕГЭ
Русский язык ЕГЭ
Математика 5-7
Математика ОГЭ
Физика
Кликните, чтобы открыть меню

6. Геометрия на плоскости (планиметрия). Часть II

1. Вспоминай формулы по каждой теме
2. Решай новые задачи каждый день
3. Вдумчиво разбирай решения

Окружность, вписанная в многоугольник или угол (страница 2)

Окружность называется вписанной в выпуклый многоугольник/угол, если она касается всех сторон этого многоугольника/угла.
Тогда многоугольник/угол называется описанным около окружности.

 

\(\blacktriangleright\) В любой треугольник можно вписать окружность. Ее центр лежит на пересечении биссектрис треугольника (рис. 1).

 

Площадь описанного треугольника ищется по формуле \[{\Large{S_{\triangle}=p\cdot r}},\]

где \(p\) – полупериметр.


 

\(\blacktriangleright\) Если в прямоугольный треугольник вписана окружность, \(a, b\) – катеты, \(c\) – гипотенуза, \(r\) – радиус этой окружности, то верна формула: \[{\large{r=\dfrac{a+b-c}2}}\]

 

\(\blacktriangleright\) Если в выпуклый четырехугольник можно вписать окружность, то суммы его противоположных сторон равны.
И наоборот: если суммы противоположных сторон выпуклого четырехугольника равны, то в него можно вписать окружность (рис. 2).
Центр вписанной окружности лежит на пересечении биссектрис углов.
Площадь описанного четырехугольника ищется по формуле

\[{\large{S_{\text{опис.4-к}}=p\cdot r}},\]

где \(p\) – полупериметр.


 

\(\blacktriangleright\) Если в параллелограмм вписана окружность, то он – ромб (рис. 3).

 

\(\blacktriangleright\) Если в прямоугольник вписана окружность, то он – квадрат (рис. 4).

 

\(\blacktriangleright\) Если в угол вписана окружность, то ее центр лежит на биссектрисе этого угла (рис. 5).

Задание 8 #3563
Уровень задания: Равен ЕГЭ

Сторона ромба равна \(1\), острый угол равен \(30^\circ\). Найдите радиус окружности, вписанной в этот ромб.

Добавить задание в избранное

Для любого многоугольника, в который можно вписать окружность, верно \(S=p\cdot r\), где \(p\) – полупериметр, а \(r\) – радиус вписанной окружности.
\(S_{\text{ромб}}=S=a^2\cdot \sin\alpha\), где \(a\) – сторона ромба, \(\alpha\) – его угол. Следовательно, \(S=1^2\cdot \frac12=\frac12\). Полупериметр ромба равен \(2\). Тогда \[r=\dfrac Sp=0,25\]

Ответ: 0,25

Задание 9 #3564
Уровень задания: Равен ЕГЭ

Острый угол ромба равен \(30^\circ\), радиус вписанной в этот ромб окружности равен \(2\). Найдите сторону ромба.

Добавить задание в избранное

Для любого многоугольника, в который можно вписать окружность, верно \(S=p\cdot r\), где \(p\) – полупериметр, а \(r\) – радиус вписанной окружности.
\(S_{\text{ромб}}=S=a^2\cdot \sin\alpha\), где \(a\) – сторона ромба, \(\alpha\) – его угол. Следовательно, \(S=a^2\cdot \frac12=\frac12a^2\). Полупериметр ромба равен \(2a\). Тогда \[\dfrac12a^2=2a\cdot 2\quad\Rightarrow\quad a=8\]

Ответ: 8

Задание 10 #3565
Уровень задания: Равен ЕГЭ

Найдите сторону правильного шестиугольника, описанного около окружности, радиус которой равен \(\sqrt3\).

Добавить задание в избранное

Для любого многоугольника, в который можно вписать окружность, верно \(S=p\cdot r\), где \(p\) – полупериметр, а \(r\) – радиус вписанной окружности.
Площадь правильного шестиугольника со стороной \(a\) равна \(S=\dfrac{3\sqrt3}2a^2\), полупериметр равен \(3a\), тогда \[\dfrac{3\sqrt3}2a^2=3a\cdot \sqrt3\quad\Rightarrow\quad a=2\]

Ответ: 2

Задание 11 #3566
Уровень задания: Равен ЕГЭ

Боковые стороны трапеции, описанной около окружности, равны \(9\) и \(12\). Найдите среднюю линию трапеции.

Добавить задание в избранное

Если в четырехугольник можно вписать окружность, то суммы его противоположных сторон равны. Следовательно, сумма оснований трапеции равна сумме боковых сторон, то есть равна \(9+12=21\). Так как средняя линия трапеции равна полусумме оснований, то ответ: \(21:2=10,5\).

Ответ: 10,5

Задание 12 #3567
Уровень задания: Равен ЕГЭ

Катеты равнобедренного прямоугольного треугольника равны \(2+\sqrt2\). Найдите радиус окружности, вписанной в этот треугольник.

Добавить задание в избранное

Известно, что для любого треугольника \(S_{\triangle}=p\cdot r\), где \(p\) – полупериметр, \(r\) – радиус вписанной окружности.
В нашем случае \(S_{\triangle}=0,5\cdot (2+\sqrt2)(2+\sqrt2)\). Гипотенуза по теореме Пифагора равна \(\sqrt2(2+\sqrt2)\), следовательно, \[r=\dfrac Sp=\dfrac{0,5 (2+\sqrt2)^2}{0,5 (2+\sqrt2+2+\sqrt2+\sqrt2(2+\sqrt2))} = 1\]

Ответ: 1

Задание 13 #3568
Уровень задания: Равен ЕГЭ

В треугольнике \(ABC\) \(AC=4, BC=3\), угол \(C\) равен \(90^\circ\). Найдите радиус вписанной окружности.

Добавить задание в избранное

Известно, что для любого треугольника \(S_{\triangle}=p\cdot r\), где \(p\) – полупериметр, \(r\) – радиус вписанной окружности.
В нашем случае \(S_{\triangle}=0,5\cdot 3\cdot 4=6\). Гипотенуза по теореме Пифагора равна \(\sqrt{3^2+4^2}=5\), следовательно, \[r=\dfrac Sp=\dfrac{6}{0,5(3+4+5)} = 1\]

Ответ: 1

Задание 14 #3559
Уровень задания: Равен ЕГЭ

Периметр треугольника равен \(12\), а радиус вписанной окружности равен \(1\). Найдите площадь этого треугольника.

Добавить задание в избранное

Так как \(S_{\triangle}=p\cdot r\), где \(p\) – полупериметр, \(r\) – радиус вписанной окружности, то \[S_{\triangle}=\dfrac{12}2\cdot 1=6\]

Ответ: 6

1 2 3 4