Математика ЕГЭ
Русский язык ЕГЭ
Математика 5-7
Математика ОГЭ
Физика
Кликните, чтобы открыть меню

6. Геометрия на плоскости (планиметрия). Часть II

1. Вспоминай формулы по каждой теме
2. Решай новые задачи каждый день
3. Вдумчиво разбирай решения

Вычисление синуса, косинуса и тангенса угла треугольника (страница 2)

В прямоугольном треугольнике:

 

\(\blacktriangleright\) Синус острого угла равен отношению противолежащего катета к гипотенузе: \[{\large{\sin \alpha = \dfrac{a}{c}}}\]

\(\blacktriangleright\) Косинус острого угла равен отношению прилежащего катета к гипотенузе: \[{\large{\cos \alpha = \dfrac{b}{c}}}\]

\(\blacktriangleright\) Тангенс острого угла равен отношению противолежащего катета к прилежащему: \[{\large{\mathrm{tg}\, \alpha = \dfrac{a}{b}}}\]

\(\blacktriangleright\) Котангенс острого угла равен отношению прилежащего катета к противолежащему: \[{\large{\mathrm{ctg}\, \alpha =\dfrac{b}{a}}}\]


 

Важные формулы:
\[{\large{\begin{array}{|lcl|} \hline \sin^2 \alpha+\cos^2 \alpha =1&\qquad& \mathrm{tg}\, \alpha \cdot \mathrm{ctg}\, \alpha =1\\ &&\\ \mathrm{tg}\, \alpha=\dfrac{\sin \alpha}{\cos \alpha}&&\mathrm{ctg}\, \alpha =\dfrac{\cos \alpha}{\sin \alpha}\\&&\\ \hline \end{array}}}\]

\[\begin{array}{|c|c|c|c|c|c|} \hline & \phantom{000}\, 0^\circ \phantom{000}& \phantom{000}\, 30^\circ \phantom{000} & \phantom{000}\, 45^\circ \phantom{000} & \phantom{000}\, 60^\circ \phantom{000} & \phantom{000}\, 90^\circ \phantom{000}\\[1ex] \hline \sin & 0 &\frac12&\frac{\sqrt2}2&\frac{\sqrt3}2 & 1\\[1ex] \hline \cos & 1 & \frac{\sqrt3}2&\frac{\sqrt2}2&\frac12 & 0\\[1ex] \hline \mathrm{tg} & 0 & \frac{\sqrt3}3&1&\sqrt3 & \text{не сущ.}\\[1ex] \hline \mathrm{ctg}& \text{не сущ.} &\sqrt3&1&\frac{\sqrt3}3 & 0\\[1ex] \hline \end{array}\]

Задание 8 #3308
Уровень задания: Равен ЕГЭ

В треугольнике \(ABC\) угол \(C=90^\circ\), \(CH\) – высота, \(BC=3\), \(\sin\angle A=\dfrac16\). Найдите \(AH\).

Добавить задание в избранное


 

По определению из \(\triangle ABC\): \[\dfrac{BC}{AB}=\sin \angle A=\dfrac16\quad\Rightarrow\quad AB=6BC=18\] Так как по свойству прямоугольного треугольника \(\triangle AHC\sim \triangle ABC\), то \[\dfrac{AH}{AC}=\dfrac{AC}{AB}\quad\Rightarrow\quad AH=\dfrac{AC^2}{AB}\] Нужно найти \(AC^2\). По теореме Пифагора \(AC^2=AB^2-BC^2=18^2-3^2=(18-3)(18+3)=15\cdot 21\). Следовательно, \[AH=\dfrac{15\cdot 21}{18}=\dfrac{35}2=17,5\]

Ответ: 17,5

Задание 9 #3309
Уровень задания: Равен ЕГЭ

В треугольнике \(ABC\) угол \(C=90^\circ\), \(CH\) – высота, \(AC=2\), \(\cos\angle A=\dfrac18\). Найдите \(BH\).

Добавить задание в избранное


 

По определению из \(\triangle ABC\): \[\dfrac{AC}{AB}=\cos \angle A=\dfrac18\quad\Rightarrow\quad AB=8AC=16\] Так как по свойству прямоугольного треугольника \(\triangle BHC\sim \triangle ABC\), то \[\dfrac{BH}{BC}=\dfrac{BC}{AB}\quad\Rightarrow\quad BH=\dfrac{BC^2}{AB}\] Нужно найти \(BC^2\). По теореме Пифагора \(BC^2=AB^2-AC^2=16^2-2^2=(16-2)(16+2)=14\cdot 18\). Следовательно, \[BH=\dfrac{14\cdot 18}{16}=15,75\]

Ответ: 15,75

Задание 10 #3310
Уровень задания: Равен ЕГЭ

В треугольнике \(ABC\) известно, что \(AC=BC=5\), \(\sin\angle A=\dfrac{7}{25}\). Найдите \(AB\).

Добавить задание в избранное


 

Проведем \(CK\perp AB\). Так как треугольник \(ABC\) равнобедренный, то \(CK\) также является медианой, следовательно, \(AK=0,5AB\). Тогда \[\dfrac7{25}=\sin\angle A=\dfrac{CK}{AC}\quad\Rightarrow\quad CK=\dfrac75\] Тогда по теореме Пифагора из \(\triangle ACK\): \[AK=\sqrt{AC^2-CK^2}=\sqrt{25-\frac{49}{25}}=\sqrt{\dfrac{25^2-7^2}{25}}= \sqrt{\dfrac{(25-7)(25+7)}{25}}=\dfrac{3\cdot 8}5=4,8\] Следовательно, \(AB=2AK=9,6\).

Ответ: 9,6

Задание 11 #3311
Уровень задания: Равен ЕГЭ

В треугольнике \(ABC\) известно, что \(AC=BC\), \(AB=8\), \(\mathrm{tg}\,\angle A=\dfrac{\sqrt{33}}4\). Найдите \(AC\).

Добавить задание в избранное


 

Проведем \(CK\perp AB\). Так как треугольник \(ABC\) равнобедренный, то \(CK\) также является медианой, следовательно, \(AK=0,5AB=4\). Тогда \[\dfrac{CK}{AK}=\mathrm{tg}\,\angle A=\dfrac{\sqrt{33}}4\quad\Rightarrow\quad CK=\sqrt{33}\] Тогда по теореме Пифагора из \(\triangle ACK\): \[AC=\sqrt{AK^2+CK^2}=\sqrt{16+33}=7\]

Ответ: 7

Задание 12 #3312
Уровень задания: Равен ЕГЭ

В треугольнике \(ABC\) известно, что \(AC=BC\), \(AB=8\), \(\sin\angle BAC=0,5\). Найдите высоту \(AH\).

Добавить задание в избранное


 

Так как \(\triangle ABC\) равнобедренный, то \(\angle BAC=\angle ABC\), следовательно, \(\sin\angle ABC=\sin\angle BAC=0,5\). Тогда из \(\triangle AHB\): \[\sin\angle ABC=\dfrac{AH}{AB}\quad\Rightarrow\quad AH=0,5AB=4\]

Ответ: 4

Задание 13 #3313
Уровень задания: Равен ЕГЭ

В треугольнике \(ABC\) известно, что \(AC=BC=4\sqrt{15}\), \(\sin\angle BAC=0,25\). Найдите высоту \(AH\).

Добавить задание в избранное


 

Так как \(\triangle ABC\) равнобедренный, то \(\angle BAC=\angle ABC\), следовательно, \(\sin\angle ABC=\sin\angle BAC=0,25\). Следовательно, из \(\triangle AHB\): \[\dfrac{AH}{AB}=\sin\angle ABC=\dfrac14 \quad\Rightarrow\quad AH=\dfrac14AB\] Проведем \(CK\perp AB\). Тогда \(CK\) также является медианой. Из \(\triangle CKB\): \[\dfrac{CK}{BC}=\sin\angle ABC=\dfrac14\quad\Rightarrow\quad CK=\sqrt{15}\] Следовательно, по теореме Пифагора из \(\triangle CKB\): \[KB=\sqrt{BC^2-CK^2}=\sqrt{(4\sqrt{15})^2-(\sqrt{15})^2}= \sqrt{3\sqrt{15}\cdot 5\sqrt{15}}=15\] Следовательно, \(AB=2KB=30\) и \(AH=\frac14AB=7,5\).

Ответ: 7,5

Задание 14 #3314
Уровень задания: Равен ЕГЭ

В треугольнике \(ABC\) известно, что \(AC=BC=27\), \(AH\) – высота, \(\cos\angle BAC=\dfrac23\). Найдите \(BH\).

Добавить задание в избранное



Так как \(\triangle ABC\) равнобедренный, то \(\angle BAC=\angle ABC\), следовательно, \(\cos\angle ABC=\cos\angle BAC=\frac23\).
Проведем \(CK\perp AB\). Так как \(\triangle ABC\) равнобедренный, то \(CK\) – медиана. Из \(\triangle CKB\): \[\dfrac{KB}{BC}=\cos\angle ABC=\dfrac23\quad\Rightarrow\quad KB=18\] Тогда \(AB=2KB=36\). Из \(\triangle AHB\): \[\dfrac{BH}{AB}=\cos\angle ABC=\dfrac23\quad\Rightarrow\quad BH=24\]

Ответ: 24

1 2 3 .... 5