Математика ЕГЭ
Русский язык ЕГЭ

6. Геометрия на плоскости (планиметрия). Часть II

1. Вспоминай формулы по каждой теме
2. Решай новые задачи каждый день
3. Вдумчиво разбирай решения

Вычисление синуса, косинуса и тангенса угла треугольника (страница 3)

В прямоугольном треугольнике:

 

\(\blacktriangleright\) Синус острого угла равен отношению противолежащего катета к гипотенузе: \[{\large{\sin \alpha = \dfrac{a}{c}}}\]

\(\blacktriangleright\) Косинус острого угла равен отношению прилежащего катета к гипотенузе: \[{\large{\cos \alpha = \dfrac{b}{c}}}\]

\(\blacktriangleright\) Тангенс острого угла равен отношению противолежащего катета к прилежащему: \[{\large{\mathrm{tg}\, \alpha = \dfrac{a}{b}}}\]

\(\blacktriangleright\) Котангенс острого угла равен отношению прилежащего катета к противолежащему: \[{\large{\mathrm{ctg}\, \alpha =\dfrac{b}{a}}}\]


 

Важные формулы:
\[{\large{\begin{array}{|lcl|} \hline \sin^2 \alpha+\cos^2 \alpha =1&\qquad& \mathrm{tg}\, \alpha \cdot \mathrm{ctg}\, \alpha =1\\ &&\\ \mathrm{tg}\, \alpha=\dfrac{\sin \alpha}{\cos \alpha}&&\mathrm{ctg}\, \alpha =\dfrac{\cos \alpha}{\sin \alpha}\\&&\\ \hline \end{array}}}\]

\[\begin{array}{|c|c|c|c|c|c|} \hline & \phantom{000}\, 0^\circ \phantom{000}& \phantom{000}\, 30^\circ \phantom{000} & \phantom{000}\, 45^\circ \phantom{000} & \phantom{000}\, 60^\circ \phantom{000} & \phantom{000}\, 90^\circ \phantom{000}\\[1ex] \hline \sin & 0 &\frac12&\frac{\sqrt2}2&\frac{\sqrt3}2 & 1\\[1ex] \hline \cos & 1 & \frac{\sqrt3}2&\frac{\sqrt2}2&\frac12 & 0\\[1ex] \hline \mathrm{tg} & 0 & \frac{\sqrt3}3&1&\sqrt3 & \text{не сущ.}\\[1ex] \hline \mathrm{ctg}& \text{не сущ.} &\sqrt3&1&\frac{\sqrt3}3 & 0\\[1ex] \hline \end{array}\]

Задание 15 #3315
Уровень задания: Равен ЕГЭ

В треугольнике \(ABC\) угол \(C\) равен \(90^\circ\), \(CH\) – высота, \(BC=8\), \(BH=4\). Найдите \(\sin\angle A\).

Добавить задание в избранное


 

Из \(\triangle BCH\): \[\sin\angle BCH=\dfrac{BH}{BC}=0,5\] По свойству прямоугольного треугольника \(\angle BCH=\angle BAC\), следовательно, \(\sin\angle A=\sin\angle BAC=0,5\).

Ответ: 0,5

Задание 16 #3316
Уровень задания: Равен ЕГЭ

В треугольнике \(ABC\) угол \(C\) равен \(90^\circ\), \(CH=4\) – высота, \(BC=\sqrt{17}\). Найдите \(\mathrm{tg}\,\angle A\).

Добавить задание в избранное


 

По теореме Пифагора из \(\triangle BCH\): \[BH=\sqrt{17-16}=1\] Следовательно, \[\mathrm{tg}\,\angle BCH=\dfrac{BH}{CH}=0,25\] По свойству прямоугольного треугольника \(\angle BCH=\angle BAC\), следовательно, \(\mathrm{tg}\,\angle A=\mathrm{tg}\,\angle BAC=0,25\).

Ответ: 0,25

Задание 17 #3317
Уровень задания: Равен ЕГЭ

В параллелограмме \(ABCD\) известно, что \(AB=3\), \(AD=21\), \(\sin\angle A=\dfrac67\). Найдите большую высоту параллелограмма.

Добавить задание в избранное


 

Проведем высоты \(BK\) и \(DH\). Тогда из \(\triangle ADH\) и \(\triangle ABK\): \[\sin\angle A=\dfrac{DH}{AD}\quad {\small{и}}\quad \sin\angle A=\dfrac{BK}{AB}\] откуда \[DH=AD\sin\angle A\quad {\small{и}}\quad BK=AB\sin\angle A\] Так как \(AD>AB\), то \(DH\) – большая высота, следовательно, \[DH=21\cdot \dfrac67=18\]

Ответ: 18

Задание 18 #3318
Уровень задания: Равен ЕГЭ

Основания равнобедренной трапеции равны \(51\) и \(65\). Боковые стороны равны \(25\). Найдите синус острого угла трапеции.

Добавить задание в избранное

Рассмотрим рисунок:


 

Проведем \(BH\perp AD\). По свойству равнобедренной трапеции \(AH=\frac12\left(AD-BC\right)=7\). Тогда по теореме Пифагора из \(\triangle ABH\): \[BH=\sqrt{25^2-7^2}=\sqrt{(25-7)(25+7)}=\sqrt{18\cdot 32}=3\cdot 8=24\] Тогда из \(\triangle ABH\) \[\sin\angle A=\dfrac{BH}{AB}=\dfrac{24}{25}=0,96\]

Ответ: 0,96

Задание 19 #3319
Уровень задания: Равен ЕГЭ

Основания равнобедренной трапеции равны \(43\) и \(73\). Косинус острого угла трапеции равен \(\dfrac57\). Найдите боковую сторону трапеции.

Добавить задание в избранное


 

Проведем \(BH\perp AD\). По свойству равнобедренной трапеции \(AH=\frac12\left(AD-BC\right)=15\). Тогда из \(\triangle ABH\): \[\dfrac57=\cos\angle A=\dfrac{AH}{AB}\quad\Rightarrow\quad AB=21\]

Ответ: 21

Задание 20 #3304
Уровень задания: Равен ЕГЭ

В треугольнике \(ABC\) угол \(C=90^\circ\), \(AC=24\), \(BC=7\). Найдите \(\sin \angle A\).

Добавить задание в избранное


 

Так как по определению \[\sin \angle A=\dfrac{BC}{AB}\] то нужно найти \(AB\). По теореме Пифагора \(AB=\sqrt{24^2+7^2}=\sqrt{625}=25\), следовательно, \[\sin \angle A=\dfrac{7}{25}=0,28\]

Ответ: 0,28

Задание 21 #2100
Уровень задания: Равен ЕГЭ

Дан прямоугольный треугольник \(YES\) с гипотенузой \(YE\). Найдите \(\cos\angle E\), если \(\sin \angle Y=0,8\).

Добавить задание в избранное


 

По определению синуса и косинуса: \[\sin \angle Y=\dfrac{ES}{YE} \qquad \text{и} \qquad \cos \angle E=\dfrac{ES}{YE}\]

Таким образом мы видим, что \(\cos \angle E=\sin \angle Y=0,8.\)

Ответ: 0,8

1 2 3 4 5