Математика
Русский язык

15. Решение неравенств

1. Вспоминай формулы по каждой теме
2. Решай новые задачи каждый день
3. Вдумчиво разбирай решения
Задание 15
Уровень задания: Равен ЕГЭ

Решите неравенство \[\dfrac{x-2}{4-3x^2}\leqslant \dfrac{x-2}{x^2-12}\]

Добавить задание в избранное

Перенесем слагаемые в левую часть и приведем к общему знаменателю:   \(\dfrac{(x-2)(x^2-12)-(x-2)(4-3x^2)}{(4-3x^2)(x^2-12)}\leqslant 0 \quad \Rightarrow \quad \dfrac{(x-2)(4x^2-16)}{(3x^2-4)(x^2-12)}\geqslant 0 \quad \Rightarrow \)   \(\Rightarrow\quad \dfrac{(x-2)\cdot 4(x-2)(x+2)}{(\sqrt3x-2)(\sqrt3x+2)(x-2\sqrt3)(x+2\sqrt3)}\geqslant 0\)  

Решим полученное неравенство методом интервалов:


 

Таким образом, решением неравенства будут \(x\in (-2\sqrt3;-2]\cup\left(-\frac2{\sqrt3};\frac2{\sqrt3}\right) \cup\{2\}\cup(2\sqrt3;+\infty)\).

Ответ:

\((-2\sqrt3;-2]\cup\left(-\frac2{\sqrt3};\frac2{\sqrt3}\right) \cup\{2\}\cup(2\sqrt3;+\infty)\)

Задание 16
Уровень задания: Равен ЕГЭ

Решите неравенство

\[\begin{aligned} \dfrac{(x^2 + 2x + 2)(25 - 10x + x^2)}{(x - 5)(17x^2 + 16)}\leqslant 0 \end{aligned}\]

Добавить задание в избранное

ОДЗ: \[\begin{cases} x - 5\neq 0\\ 17x^2 + 16\neq 0 \end{cases} \qquad\Leftrightarrow\qquad x\neq 5.\] Решим исходное неравенство методом интервалов. Для этого найдём нули числителя и знаменателя.

1) Нули числителя находятся из уравнения

\[\begin{aligned} (x^2 + 2x + 2)(25 - 10x + x^2) = 0\qquad\Leftrightarrow\qquad \bigl((x + 1)^2 + 1\bigr)(5 - x)^2 = 0 \end{aligned}\]

Произведение выражений равно нулю в том и только том случае, когда хотя бы одно из них равно нулю и все они не теряют смысл, тогда нули числителя: \[x = 5,\] так как при любом \(x\) выполнено \((x + 1)^2 + 1\geqslant 1 > 0\).

2) Нули знаменателя находятся из уравнения

\[\begin{aligned} (x - 5)(17x^2 + 16) = 0 \end{aligned}\]

Так как при любом \(x\) выполнено \(x^2\geqslant 0\), то при любом \(x\) выполнено \(17x^2 + 16 > 0\), тогда нули знаменателя: \[x = 5.\]

По методу интервалов:



откуда \(x\in (-\infty; 5).\)
В этом ответе ОДЗ уже учтено (мы учли его, когда выкололи на числовой прямой нули знаменателя).

Ответ:

\((-\infty; 5)\)

Задание 17
Уровень задания: Равен ЕГЭ

Решите неравенство \[\dfrac{(x-1)(x-2)(x-3)}{(x+1)(x+2)(x+3)}>1\]

 

Источник: Сборник задач по математике для поступающих во ВТУЗы под редакцией М.И.Сканави.

Добавить задание в избранное

Перенесем \(1\) в левую часть и приведем слагаемые к общему знаменателю:

 

\(\dfrac{(x-1)(x-2)(x-3)}{(x+1)(x+2)(x+3)}-1>0 \quad \Rightarrow \quad \dfrac{(x-1)(x-2)(x-3)-(x+1)(x+2)(x+3)}{(x+1)(x+2)(x+3)}>0 \quad \Rightarrow\)  

\(\dfrac{(x^3-3x^2+2x-3x^2+9x-6)-(x^3+3x^2+2x+3x^2+9x+6)}{(x+1)(x+2)(x+3)}>0 \quad \Rightarrow \quad \dfrac{-12(x^2+1)}{(x+1)(x+2)(x+3)}>0\)  

Заметим, что выражение \(x^2+1\) всегда \(\geqslant 1\), то есть всегда положительно, значит, можно разделить обе части неравенства на это выражение:

\[\dfrac{-12}{(x+1)(x+2)(x+3)}>0 \quad \Rightarrow \quad \dfrac1{(x+1)(x+2)(x+3)}<0\]

Решим неравенство методом интервалов:


 

Таким образом, нам подходят \(x\in (-\infty;-3)\cup(-2;-1)\).

Ответ:

\((-\infty;-3)\cup(-2;-1)\)

Задание 18
Уровень задания: Равен ЕГЭ

Решите неравенство \[\dfrac3{6x^2-x-12}\leqslant\dfrac{25x-47}{10x-15}-\dfrac3{3x+4}\]

 

Источник: Сборник задач по математике для поступающих во ВТУЗы под редакцией М.И.Сканави.

Добавить задание в избранное

Разложим на множители \(6x^2-x-12\), для этого решим уравнение \[6x^2-x-12=0 \quad \Rightarrow \quad x_1=-\dfrac43 \quad \text{и}\quad x_2=\dfrac32.\]

Значит, выражение можно записать в виде: \(6\left(x+\frac43\right)\left(x-\frac32\right)=(3x+4)(2x-3)\).

 

Перенесем все слагаемые в левую часть и приведем к общему знаменателю:   \(\dfrac3{(3x+4)(2x-3)}-\dfrac{25x-47}{5(2x-3)}+\dfrac3{3x+4}\leqslant0 \quad \Rightarrow \)   \(\Rightarrow\quad \dfrac{15-(25x-47)(3x+4)+15(2x-3)}{5(3x+4)(2x-3)}\leqslant0 \quad \Rightarrow \)   \(\Rightarrow \quad \dfrac{-75x^2+71x+158}{5(3x+4)(2x-3)}\leqslant0\)  

Разложим на множители \(-75x^2+71x+158\), для этого решим уравнение

\[-75x^2+71x+158=0 \quad \Rightarrow \quad x_1=-\dfrac{79}{75} \quad \text{и} \quad x_2=2.\]

Следовательно, выражение можно переписать в виде \(-75\left(x+\frac{79}{75}\right)(x-2)=-(75x+79)(x-2)\). Тогда неравенство примет вид \[\dfrac{-(75x+79)(x-2)}{5(3x+4)(2x-3)}\leqslant0 \quad \Rightarrow \quad \dfrac{(75x+79)(x-2)}{(3x+4)(2x-3)}\geqslant 0\]

Решим полученное неравенство методом интервалов:


 

Таким образом, решением неравенства являются \(x\in \left(-\infty;-\frac43\right)\cup\left[-\frac{79}{75};\frac32\right) \cup[2;+\infty)\).

Ответ:

\(\left(-\infty;-\frac43\right)\cup \left[-\frac{79}{75};\frac32\right)\cup[2;+\infty)\)

Задание 19
Уровень задания: Сложнее ЕГЭ

Решите неравенство

\[\begin{aligned} \dfrac{(x - 5)(x^2 - 15)}{(x - 7)(x^2 + 2\pi)}\geqslant 0 \end{aligned}\]

Добавить задание в избранное

ОДЗ: \[\begin{cases} x - 7\neq 0\\ x^2 + 2\pi\neq 0 \end{cases} \qquad\Leftrightarrow\qquad x\neq 7.\] Решим исходное неравенство методом интервалов. Для этого найдём нули числителя и знаменателя.

1) Нули числителя находятся из уравнения

\[\begin{aligned} (x - 5)(x^2 - 15) = 0 \end{aligned}\]

Произведение выражений равно нулю в том и только том случае, когда хотя бы одно из них равно нулю и все они не теряют смысл, тогда нули числителя: \[x = 5,\qquad\qquad x = \pm\sqrt{15}\]

2) Нули знаменателя находятся из уравнения

\[\begin{aligned} (x - 7)(x^2 + 2\pi) = 0 \end{aligned}\]

Так как при любом \(x\) выполнено \(x^2\geqslant 0\), то при любом \(x\) выполнено \(x^2 + 2\pi \geqslant 2\pi > 0\), тогда нули знаменателя: \[x = 7.\]

По методу интервалов:



откуда \(x\in (-\infty; -\sqrt{15}]\cup [\sqrt{15}; 5]\cup (7; +\infty).\)
В этом ответе ОДЗ уже учтено (мы учли его, когда выкололи на числовой прямой нули знаменателя).

Ответ:

\((-\infty; -\sqrt{15}]\cup [\sqrt{15}; 5]\cup (7; +\infty)\)

Задание 20
Уровень задания: Сложнее ЕГЭ

Решите неравенство

\[\begin{aligned} \dfrac{(x + e)^2(x^2 + 1)^2}{(x - e)^2(x^2 - 1)}\leqslant 0 \end{aligned}\]

Добавить задание в избранное

ОДЗ:

\[\begin{aligned} (x - e)^2(x^2 - 1)\neq 0 \end{aligned}\]

Решим полученное неравенство методом интервалов. Для этого найдём нули числителя и знаменателя.

1) Нули числителя находятся из уравнения \[(x + e)^2(x^2 + 1)^2 = 0\] Произведение выражений равно нулю в том и только том случае, когда хотя бы одно из них равно нулю и все они не теряют смысл. Кроме того, \(x^2\geqslant 0\), тогда \(x^2 + 1\geqslant 1 > 0\), следовательно, нули числителя: \[x = -e\]

2) Найдём нули знаменателя: \[(x - e)^2(x^2 - 1) = 0\quad\Leftrightarrow\quad (x - e)^2(x - 1)(x + 1) = 0\quad\Leftrightarrow\quad \left[ \begin{gathered} x = e\\ x = 1\\ x = -1 \end{gathered} \right.\]

По методу интервалов:



откуда \[x\in(-1; 1)\,.\] В этом ответе ОДЗ уже учтено (мы учли его, когда выкололи на числовой прямой нули знаменателя).

Ответ:

\((-1; 1)\)

Задание 21
Уровень задания: Сложнее ЕГЭ

Решите неравенство

\[\begin{aligned} \dfrac{(x + e)(x^2 - e)}{(2x - e)(x^2 + e)}\leqslant 0 \end{aligned}\]

Добавить задание в избранное

ОДЗ:

\[\begin{aligned} (2x - e)(x^2 + e)\neq 0 \end{aligned}\]

Решим полученное неравенство методом интервалов. Для этого найдём нули числителя и знаменателя.

1) Нули числителя находятся из уравнения \[(x + e)(x^2 - e) = 0\quad\Leftrightarrow\quad (x + e)(x - \sqrt{e})(x + \sqrt{e}) = 0\] Произведение выражений равно нулю в том и только том случае, когда хотя бы одно из них равно нулю и все они не теряют смысл, тогда нули числителя: \[x = -e,\qquad\qquad x = \sqrt{e},\qquad\qquad x = -\sqrt{e}\]

2) Найдём нули знаменателя: \[(2x - e)(x^2 + e) = 0\] так как \(x^2\geqslant 0\), то \(x^2 + e\geqslant e > 0\), следовательно, знаменатель обращается в \(0\) только при \(x = \dfrac{e}{2}\).

Сравним \(\dfrac{e}{2}\) и \(\sqrt{e}\). Так как \(\dfrac{e}{2} > 0\) и \(\sqrt{e} > 0\), то \[\dfrac{e}{2}\ast \sqrt{e}\qquad\Leftrightarrow\qquad \dfrac{e^2}{4}\ast e\qquad\Leftrightarrow\qquad e\cdot \dfrac{e}{4}\ast e\cdot 1\qquad\Leftrightarrow\qquad \dfrac{e}{4}\ast 1\,,\] таким образом, \(\ast\) – это знак \(<\).

По методу интервалов:



откуда \[x\in\left[-\sqrt{e}; \dfrac{e}{2}\right)\cup[\sqrt{e}; e]\,.\] В этом ответе ОДЗ уже учтено (мы учли его, когда выкололи на числовой прямой нули знаменателя).

Ответ:

\(\left[-\sqrt{e}; \dfrac{e}{2}\right)\cup[\sqrt{e}; e]\)

1 2 3 4 .... 6