Математика ЕГЭ
Русский язык ЕГЭ
Математика 5-7
Математика ОГЭ
Кликните, чтобы открыть меню

5. Решение уравнений

1. Вспоминай формулы по каждой теме
2. Решай новые задачи каждый день
3. Вдумчиво разбирай решения

Логарифмические уравнения (страница 4)

Логарифмическое уравнение – уравнение, содержащее переменную \(x\) в основании и/или аргументе логарифма.

 

Стандартное логарифмическое уравнение:

\[{\large{\log_a{f(x)}=\log_a{g(x)} \quad \Leftrightarrow \quad \begin{cases} f(x)=g(x)\\ f(x)>0 \ (\text{или }g(x)>0) \end{cases}}}\]

где \(a>0, a\ne 1\).

 

Некоторые важные формулы:

 

(0) при \(a>0, \ a\ne 1, \ b>0\) выполняется основное логарифмическое тождество \[{\large{a^{\log_ab}=b}}\]

(1) при \(a>0,\ a\ne 1\) \[{\large{\log_a1=0, \qquad \log_aa=1}}\]

(2) при \(a>0,\ a\ne 1,\ b>0\) \[{\large{\log_{a^n}{b^m}=\frac mn\log_ab}}\]

при четных \(m\) и \(n\) и \(a\ne 0,\ a\ne 1,\ b\ne 0\) \[{\large{\log_{a^n}{b^m}=\dfrac mn\log_{|a|}{|b|}}}\]

(3) при \(a>0,\ a\ne 1,\ b>0,\ c>0\) \[{\large{b^{\log_ac}=c^{\log_ab}}}\]

(4) при \(a>0,\ a\ne 1,\ bc>0\) \[{\large{\log_a{bc}=\log_a{|b|}+\log_a{|c|} \qquad \log_a{\dfrac bc}=\log_a{|b|}-\log_a{|c|}}}\]

(5) при \(a>0,\ a\ne 1,\ b>0,\ b\ne 1,\ c>0\) \[{\large{\log_ab\cdot \log_bc=\log_ac \Longleftrightarrow \log_bc=\dfrac{\log_ac}{\log_ab}}}\]

Задание 22 #437
Уровень задания: Равен ЕГЭ

Найдите корень уравнения \(\log_{\sqrt{2}}(3x + 1) = \log_{\sqrt{2}}(2x - 12) + 2\).

Решение скрыто, так как задача находится в активном домашнем задании марафона.

Подключиться к марафону можно тут: Марафон Школково - ВКонтакте

Решение будет опубликовано 28.03.2019 в 09:00

Задание 23 #438
Уровень задания: Равен ЕГЭ

Найдите корень уравнения \(\log_{\sqrt[3]{3}}(22x - 15) = \log_{\sqrt[3]{3}}(2x + 11) + 6\).

Решение скрыто, так как задача находится в активном домашнем задании марафона.

Подключиться к марафону можно тут: Марафон Школково - ВКонтакте

Решение будет опубликовано 28.03.2019 в 09:00

Задание 24 #439
Уровень задания: Сложнее ЕГЭ

Найдите корень уравнения \(\log_{x - 3} 4 = 2\). Если уравнение имеет более одного корня, в ответе укажите наименьший из них.

Решение скрыто, так как задача находится в активном домашнем задании марафона.

Подключиться к марафону можно тут: Марафон Школково - ВКонтакте

Решение будет опубликовано 28.03.2019 в 09:00

Задание 25 #440
Уровень задания: Сложнее ЕГЭ

Найдите корень уравнения \(\log_{5 - 2x} 9 = 2\). Если уравнение имеет более одного корня, в ответе укажите наибольший из них.

Решение скрыто, так как задача находится в активном домашнем задании марафона.

Подключиться к марафону можно тут: Марафон Школково - ВКонтакте

Решение будет опубликовано 28.03.2019 в 09:00

Задание 26 #441
Уровень задания: Сложнее ЕГЭ

Найдите корень уравнения \(\log_{3x + 3} 27 = 3\). Если уравнение имеет более одного корня, в ответе укажите наибольший из них.

Решение скрыто, так как задача находится в активном домашнем задании марафона.

Подключиться к марафону можно тут: Марафон Школково - ВКонтакте

Решение будет опубликовано 28.03.2019 в 09:00

Задание 27 #442
Уровень задания: Сложнее ЕГЭ

Найдите корень уравнения \(\log_{9} (3^{5x - 1}) = 2\).

Решение скрыто, так как задача находится в активном домашнем задании марафона.

Подключиться к марафону можно тут: Марафон Школково - ВКонтакте

Решение будет опубликовано 28.03.2019 в 09:00

Задание 28 #434
Уровень задания: Сложнее ЕГЭ

Найдите корень уравнения \(\log_{\sqrt{2017}}(\sqrt{2} e^x - 17x + 9) = \log_{\sqrt{2017}}(\sqrt{2} e^x + 8x + 7)\).

Решение скрыто, так как задача находится в активном домашнем задании марафона.

Подключиться к марафону можно тут: Марафон Школково - ВКонтакте

Решение будет опубликовано 28.03.2019 в 09:00