Математика
Русский язык

11. Сюжетные текстовые задачи

1. Вспоминай формулы по каждой теме
2. Решай новые задачи каждый день
3. Вдумчиво разбирай решения

Сюжетные задачи повышенного уровня сложности (страница 3)

\(\blacktriangleright\) Арифметическая прогрессия \(\{a_1,a_2,\dots\}\)– последовательность чисел, где каждое число, начиная со второго, получается путем добавления к предыдущему числу одного и того же числа \(d\), называемого разностью прогрессии. \[{\large{a_n-a_{n-1}=d}}\] Справедливы следующие формулы:

 

\({\large{a_n=a_1+(n-1)d}}\)

 

\({\large{\dfrac{a_{n-1}+a_{n+1}}2=a_n}}\) (каждый элемент равен среднему арифметическому двух соседних)

Пример: \(1, -2, -5, -8, \dots\) – арифметическая прогрессия с разностью \(d=-3\).

Сумма первых \(n\) элементов арифметической прогрессии \[{\large{S_n=\dfrac{a_1+a_n}2\cdot n}}\]

\(\blacktriangleright\) Геометрическая прогрессия \(\{b_1, b_2, \dots\}\) – последовательность чисел, где каждое число, начиная со второго, получается путем умножения предыдущего числа на одно и то же число \(q\), называемое знаменателем прогрессии. \[{\large{b_n=b_{n-1}\cdot q}}\] Справедливы следующие формулы:

 

\({\large{b_n=b_1\cdot q^{n-1}}}\)

 

\({\large{\sqrt{b_{n-1}\cdot b_{n+1}}=b_n}}\) (каждый элемент равен среднему геометрическому двух соседних)

Пример: \(2, 1, \dfrac12, \dfrac14, \dots\) – геометрическая прогрессия со знаменателем \(q=\dfrac12\).

Сумма первых \(n\) элементов геометрической прогрессии \[{\large{S_n=\dfrac{1-q^n}{1-q}\cdot b_1, \quad q\ne 1}}\]

Задание 15
Уровень задания: Сложнее ЕГЭ

Сто шестнадцать одинаковых крокодилов выпивают полный бассейн воды за один день. Каждое утро уборщик проверяет бассейн, и если бассейн не полный, то уборщик доливает в него фиксированное количество воды (всегда одинаковое). Известно, что однажды шесть крокодилов выпили бассейн за двадцать один день. За сколько дней бассейн выпьют два крокодила?

Добавить задание в избранное

За \(21\) день шесть крокодилов выпили столько же воды, сколько её выпили бы \(6\cdot 21 = 126\) крокодилов за день (все крокодилы одинаковые). При этом известно, что полный бассейн за день выпивают \(116\) крокодилов. Но зачем тогда понадобились ещё \(126 - 116 = 10\) крокодилов?

Дело в том, что каждое утро, кроме первого, в бассейн доливали воду. Тогда эти \(10\) крокодилов понадобились, чтобы выпить всё то, что долил уборщик (а он доливал воду \(21 - 1 = 20\) раз).

Таким образом, уборщик каждое утро доливал \(10 : 20 = 0,5\) от суточной нормы одного крокодила. Будем называть долитую уборщиком воду новой, а воду, которая изначально была в бассейне, старой. Можно считать, что один из двух крокодилов каждый день сначала выпивает всю новую воду, а потом принимается за старую.

Посчитаем, сколько старой воды каждый день, кроме первого, выпивают два крокодила вместе. Ответом будет полуторная норма одного крокодила.

В итоге, можно считать, что уборщик воду не доливает, но каждый день (кроме первого) воду пьют не два, а полтора крокодила :) Так как полный бассейн – это \(116\) крокодильих норм, то после первого дня на долю полутора крокодилов придётся \(116 - 2 = 114\) норм, которые они выпьют за \(114 : 1,5 = 76\) дней. Тогда, с учётом первого дня, ответ \(76 + 1 = 77\).

Ответ: 77

1 2 3