Математика
Русский язык

4. Введение в теорию вероятностей

1. Вспоминай формулы по каждой теме
2. Решай новые задачи каждый день
3. Вдумчиво разбирай решения
Задание 1
Уровень задания: Равен ЕГЭ

В соревнованиях по толканию ядра участвуют 8 спортсменов из Аргентины, 6 спортсменов из Бразилии, 5 спортсменов из Парагвая и 6 – из Уругвая. Порядок, в котором выступают спортсмены, определяется жребием. Найдите вероятность того, что спортсмен, выступающий последним, окажется из Аргентины.

Добавить задание в избранное

Заметим, что вероятность того, что спортсмен, выступающий последним, окажется из Аргентины, такая же, как вероятность, что он будет выступать первым, вторым, третьим и т.п.
Всего претендентов на последнее место: \(8+6+5+6=25\) спортсменов. Нам удовлетворяют лишь 8 из Аргентины. Следовательно, вероятность равна отношению количества удовлетворяющих исходов к количеству всех: \[\dfrac{8}{25}=0,32.\]

Ответ: 0,32

Задание 2
Уровень задания: Равен ЕГЭ

В случайном эксперименте бросают две правильные игральные кости. Найдите вероятность того, что в сумме выпадет 3 очка. Результат округлите до сотых.

Добавить задание в избранное

Так как вероятности выпадения любой пары очков в эксперименте одинаковы, то искомая вероятность есть просто отношение количества исходов, в которых в сумме получается 3 очка, к количеству всевозможных исходов. Набрать 3 очка можно только двумя способами: \((2; 1)\) и \((1; 2)\).

Количество всевозможных исходов эксперимента равно количеству всевозможных различных пар \((a; b)\), где \(a\) и \(b\) принимают значения 1, 2, 3, 4, 5 или 6.

Количество всевозможных исходов эксперимента равно 36.
Вероятность суммарного выпадения 3 очков равна \[\dfrac{2}{36} = 0,0(5).\] После округления окончательный ответ становится \(0,06\).

 

Замечание: пары \((a; b)\) и \((b; a)\) при \(a\neq b\) – разные. В самом деле, в условии задачи ничего не изменилось бы, если бы было сказано, что первая кость – красная, а вторая – синяя. Но в таком случае разница была бы очевидна.

Ответ: 0,06

Задание 3
Уровень задания: Равен ЕГЭ

В классе 10 мальчиков и 15 девочек. Учитель случайным образом выбирает отвечающего у доски. Какова вероятность того, что у доски будет отвечать девочка?

Добавить задание в избранное

Так как вероятности выбора любого школьника одинаковы, то искомая вероятность есть просто отношение количества девочек к общему количеству человек в классе. Вероятность выбора девочки равна \[\dfrac{15}{10 + 15} = 0,6.\]

Ответ: 0,6

Задание 4
Уровень задания: Равен ЕГЭ

В кинопрокате показывают 3 боевика и 7 мелодрам. Максим выбирает, на какой сеанс пойти, случайным образом. Какова вероятность того, что он пойдет на мелодраму?

Добавить задание в избранное

Так как вероятности выбора любого фильма одинаковы, то искомая вероятность есть просто отношение количества мелодрам к общему количеству фильмов в прокате. Вероятность выбора мелодрамы равна \[\dfrac{7}{3 + 7} = 0,7.\]

Ответ: 0,7

Задание 5
Уровень задания: Равен ЕГЭ

В конференции участвуют 12 французов, 11 россиян, 45 американцев и 32 англичанина. Порядок прочтения докладов определяется жребием. Какова вероятность того, что заключительный доклад будет читаться россиянином?

Добавить задание в избранное

Так как вероятности выбора любого доклада одинаковы, то искомая вероятность есть просто отношение количества россиян на конференции к общему количеству участников конференции. Вероятность того, что заключительный доклад будет читаться россиянином равна \[\dfrac{11}{12 + 11 + 45 + 32} = 0,11.\]

Ответ: 0,11

Задание 6
Уровень задания: Равен ЕГЭ

В коробке 4 красных, 2 синих и 4 зеленых шара. Азат наугад достает один шар. Какова вероятность того, что этот шар красный?

Добавить задание в избранное

Так как вероятности выбора любого шара одинаковы, то искомая вероятность есть просто отношение количества красных шаров к общему количеству шаров в коробке. Вероятность того, что вытащенный шар будет красный равна \[\dfrac{4}{4 + 2 + 4} = 0,4.\]

Ответ: 0,4

Задание 7
Уровень задания: Равен ЕГЭ

В коробке 15 шоколадных конфет, 4 карамели и 1 грильяж. Ваня наугад выбирает одну конфету. Какова вероятность того, что эта конфета окажется грильяжем?

Добавить задание в избранное

Так как вероятности выбора любой конфеты одинаковы, то искомая вероятность есть просто отношение количества грильяжей к общему количеству конфет в коробке. Вероятность того, что вытащенная конфета окажется грильяжем равна \[\dfrac{1}{15 + 4 + 1} = 0,05.\]

Ответ: 0,05

1 2 3