Математика
Русский язык

Логарифмы. Логарифмические формулы. Свойства логарифмов

1. Читай полную теорию
2. Вникай в доказательства
3. Применяй на практике

Факт 1.
\(\bullet\) Логарифм по основанию \(a\) от \(b\) – это число \(t\), которое показывает, в какую степень нужно возвести \(a\), чтобы получить \(b\).
Ограничения: числа \(a\) и \(b\) такие, что \(a>0,\ a\ne 1,\ b>0\).
\[\Large{{\color{blue}{\log_a{b}=t\quad\Leftrightarrow\quad a^t=b }}}\]
Т.к. мы имеем право возводить в любую степень, то \(t\in \mathbb{R}\).
Таким образом, верно основное логарифмическое тождество \[{\Large{a^{\log_ab}=b}}\]
\(\bullet\) Справедливы следующие формулы: \[{\large{\begin{array}{|ll|l|} \hline \qquad \qquad \qquad \qquad {\small{\text{Формулы}}} && \qquad \qquad{\small{\text{Ограничения}}}\\ &&\\ \hline \textbf{(1)} \log_a1=0&&a>0, a\ne 1\\ &&\\ \textbf{(2)} \log_aa=1 &&a>0, a\ne 1\\ &&\\ \textbf{(3)} \log_{a}{b^m}=m\log_a|b|&(m - {\small{\text{четн.}}})&a>0, a\ne 1, b\ne 0\\ &&\\ \textbf{(4)}\log_{a}{b^m}=m\log_ab& (m - {\small{\text{нечетн.}}})&a>0, a\ne 1, b>0\\ &&\\ \textbf{(5)} \log_{a^n}{b}=\frac 1n\log_{|a|}b&(n - {\small{\text{четн.}}})&a\ne 0, a\ne 1, b>0\\ &&\\ \textbf{(6)}\log_{a^n}b=\frac1n\log_ab&(n - {\small{\text{нечетн.}}})&a>0, a\ne 1, b>0\\ &&\\ \textbf{(7)} \log_a{bc}=\log_a|b|+\log_a|c|&&a>0, a\ne 1, bc\ne 0\\ &&\\ \textbf{(8)} \log_a{\dfrac bc}=\log_a|b|-\log_a|c|&&a>0, a\ne 1,bc\ne 0 \\ &&\\ \textbf{(9)} a^{\log_ab}=b &&a>0, a\ne 1, b>0\\ &&\\ \textbf{(10)}c^{\log_ab}=b^{\log_ac}&&a>0, a\ne 1, b>0, c>0\\ &&\\ \textbf{(11)} \log_ab\cdot \log_bc=\log_ac && a>0, a\ne 1,b>0, b\ne 1, c>0\\ &&\\ \textbf{(11'}) \log_bc=\dfrac{\log_ac}{\log_ab}&&a>0, a\ne 1,b>0, b\ne 1, c>0\\ &&\\ &&\\ {\small{\text{ЧАСТНЫЕ СЛУЧАИ:}}}&& \\ \textbf{(12)} \log_ab\cdot \log_ba=1 && a>0, a\ne 1, b>0, b\ne 1\\ &&\\ \textbf{(12'}) \log_ab=\dfrac1{\log_ba}&&a>0, a\ne 1, b>0, b\ne 1\\ &&\\ \hline \end{array}}}\]

Заметим, что при выполнении ограничений данные формулы верны в обе стороны!