Математика
Русский язык

Правильный шестиугольник и его свойства

1. Читай полную теорию
2. Вникай в доказательства
3. Применяй на практике

Определение

Выпуклый многоугольник называется правильным, если все его стороны равны и все его углы равны.

 

Замечание

Т.к. сумма всех углов \(n\)–угольника равна \(180^\circ(n-2)\), то каждый угол правильного \(n\)–угольника равен \[\alpha_n=\dfrac{n-2}n \cdot 180^\circ\]

Пример

Каждый угол правильного четырехугольника (т.е. квадрата) равен \(\dfrac {4-2}4\cdot 180^\circ=90^\circ\);

 

каждый угол правильного шестиугольника равен \(\dfrac{6-2}6\cdot 180^\circ=120^\circ\).

 

Теоремы

1. Около любого правильного многоугольника можно описать окружность, и притом только одну.

 

2. В любой правильный многоугольник можно вписать окружность, и притом только одну.

 

Следствия

1. Окружность, вписанная в правильный многоугольник, касается всех его сторон в серединах.

 

2. Центры вписанной и описанной окружности у правильного многоугольника совпадают.

 

Теорема

Если \(a\) – сторона правильного \(n\)–угольника, \(R\) и \(r\) – радиусы описанной и вписанной окружностей соответственно, то верны следующие формулы: \[\begin{aligned} S&=\dfrac n2ar\\ a&=2R\cdot \sin\dfrac{180^\circ}n\\ r&=R\cdot \cos\dfrac{180^\circ}n \end{aligned}\]


 

Свойства правильного шестиугольника

1. Сторона равна радиусу описанной окружности: \(a=R\).

2. Радиус описанной окружности является биссектрисой угла правильного шестиугольника.

3. Все углы правильного шестиугольника равны \(120^\circ\).

4. Площадь правильного шестиугольника со стороной \(a\) равна \(\dfrac{3\sqrt{3}}{2}a^2\).

5. Диагонали пересекаются в одной точке и делят его на 6 равносторонних треугольников, у которых высота равна радиусу \(r\) вписанной в правильный шестиугольник окружности.

6. Инвариантен относительно поворота плоскости на угол, кратный \(60^\circ\) относительно центра описанной окружности (слово “инвариантный” означает, что при таких поворотах правильный шестиугольник перейдёт в себя, то есть такие повороты являются его симметриями).

 

Замечание

В общем случае правильный \(n\)-угольник инвариантен относительно поворота на угол \(\dfrac{360^\circ}{n}\).