Математика
Русский язык

Площади многоугольников

1. Читай полную теорию
2. Вникай в доказательства
3. Применяй на практике

\[{\Large{\text{Основные факты о площади}}}\]

Можно сказать, что площадь многоугольника — это величина, обозначающая часть плоскости, которую занимает данный многоугольник. За единицу измерения площади принимают площадь квадрата со стороной \(1\) см, \(1\) мм и т.д. (единичный квадрат). Тогда площадь будет измеряться в см\(^2\), мм\(^2\) соответственно.

Иными словами, можно сказать, что площадь фигуры — это величина, численное значение которой показывает, сколько раз единичный квадрат умещается в данной фигуре.

 

Свойства площади

1. Площадь любого многоугольника — величина положительная.

2. Равные многоугольники имеют равные площади.

3. Если многоугольник составлен из нескольких многоугольников, то его площадь равна сумме площадей этих многоугольников.

4. Площадь квадрата со стороной \(a\) равна \(a^2\).  

\[{\Large{\text{Площадь прямоугольника и параллелограмма}}}\]

Теорема: площадь прямоугольника

Площадь прямоугольника со сторонами \(a\) и \(b\) равна \(S=ab\).

 

Доказательство

Достроим прямоугольник \(ABCD\) до квадрата со стороной \(a+b\), как показано на рисунке:


 

Данный квадрат состоит из прямоугольника \(ABCD\), еще одного равного ему прямоугольника и двух квадратов со сторонами \(a\) и \(b\). Таким образом,

 

\(\begin{multline*} S_{a+b}=2S_{\text{пр-к}}+S_a+S_b \Leftrightarrow (a+b)^2=2S_{\text{пр-к}}+a^2+b^2 \Leftrightarrow\\ a^2+2ab+b^2=2S_{\text{пр-к}}+a^2+b^2 \Rightarrow S_{\text{пр-к}}=ab \end{multline*}\)

 

Определение

Высота параллелограмма — это перпендикуляр, проведенный из вершины параллелограмма к стороне (или к продолжению стороны), не содержащей эту вершину.
Например, высота \(BK\) падает на сторону \(AD\), а высота \(BH\) — на продолжение стороны \(CD\):


 

Теорема: площадь параллелограмма

Площадь параллелограмма равна произведению высоты и стороны, к которой проведена эта высота.

 

Доказательство

Проведем перпендикуляры \(AB'\) и \(DC'\), как показано на рисунке. Заметим,что эти перпендикуляры равны высоте параллелограмма \(ABCD\).


 

Тогда \(AB'C'D\) – прямоугольник, следовательно, \(S_{AB'C'D}=AB'\cdot AD\).

 

Заметим, что прямоугольные треугольники \(ABB'\) и \(DCC'\) равны. Таким образом,

 

\(S_{ABCD}=S_{ABC'D}+S_{DCC'}=S_{ABC'D}+S_{ABB'}=S_{AB'C'D}=AB'\cdot AD.\)



 

\[{\Large{\text{Площадь треугольника}}}\]

Определение

Будем называть сторону, к которой в треугольнике проведена высота, основанием треугольника.

 

Теорема

Площадь треугольника равна половине произведения его основания на высоту, проведенную к этому основанию.

 

Доказательство

Пусть \(S\) – площадь треугольника \(ABC\). Примем сторону \(AB\) за основание треугольника и проведём высоту \(CH\). Докажем, что \[S = \dfrac{1}{2}AB\cdot CH.\] Достроим треугольник \(ABC\) до параллелограмма \(ABDC\) так, как показано на рисунке:



Треугольники \(ABC\) и \(DCB\) равны по трем сторонам (\(BC\) – их общая сторона, \(AB = CD\) и \(AC = BD\) как противоположные стороны параллелограмма \(ABDC\)), поэтому их площади равны. Следовательно, площадь \(S\) треугольника \(ABC\) равна половине площади параллелограмма \(ABDC\), то есть \(S = \dfrac{1}{2}AB\cdot CH\).

 

Теорема

Если два треугольника \(\triangle ABC\) и \(\triangle A_1B_1C_1\) имеют равные высоты, то их площади относятся как основания, к которым эти высоты проведены.


 

Следствие

Медиана треугольника делит его на два треугольника, равных по площади.

 

Теорема

Если два треугольника \(\triangle ABC\) и \(\triangle A_2B_2C_2\) имеют по равному углу, то их площади относятся как произведения сторон, образующих этот угол.

 

Доказательство

Пусть \(\angle A=\angle A_2\). Совместим эти углы так, как показано на рисунке (точка \(A\) совместилась с точкой \(A_2\)):


 

Проведем высоты \(BH\) и \(C_2K\).

Треугольники \(AB_2C_2\) и \(ABC_2\) имеют одинаковую высоту \(C_2K\), следовательно: \[\dfrac{S_{AB_2C_2}}{S_{ABC_2}}=\dfrac{AB_2}{AB}\]

Треугольники \(ABC_2\) и \(ABC\) имеют одинаковую высоту \(BH\), следовательно: \[\dfrac{S_{ABC_2}}{S_{ABC}}=\dfrac{AC_2}{AC}\]

Перемножая последние два равенства, получим: \[\dfrac{S_{AB_2C_2}}{S_{ABC}}=\dfrac{AB_2\cdot AC_2}{AB\cdot AC} \qquad \text{ или } \qquad \dfrac{S_{A_2B_2C_2}}{S_{ABC}}=\dfrac{A_2B_2\cdot A_2C_2}{AB\cdot AC}\]

Теорема Пифагора

В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов:


 

Верно и обратное: если в треугольнике квадрат длины одной стороны равен сумме квадратов длин других двух сторон, то такой треугольник прямоугольный.

 

Теорема

Площадь прямоугольного треугольника равна половине произведения катетов.

 

Теорема: формула Герона

Пусть \(p\) – полупериметр треугольника, \(a\), \(b\), \(c\) – длины его сторон, тогда его площадь равна \[S_{\triangle}=\sqrt{p(p - a)(p - b)(p - c)}\]



 

\[{\Large{\text{Площадь ромба и трапеции}}}\]

Замечание

Т.к. ромб является параллелограммом, то для него верна та же формула, т.е. площадь ромба равна произведению высоты и стороны, к которой проведена эта высота.

 

Теорема

Площадь выпуклого четырехугольника, диагонали которого перпендикулярны, равна половине произведения диагоналей.

 

Доказательство

Рассмотрим четырехугольник \(ABCD\). Обозначим \(AO=a, CO=b, BO=x, DO=y\):


 

Заметим, что данный четырехугольник составлен из четырех прямоугольных треугольников, следовательно, его площадь равна сумме площадей этих треугольников:

\(\begin{multline*} S_{ABCD}=\frac12ax+\frac12xb+\frac12by+\frac12ay=\frac12(ax+xb+by+ay)=\\ \frac12((a+b)x+(a+b)y)=\frac12(a+b)(x+y)\end{multline*}\)

Следствие: площадь ромба

Площадь ромба равна половине произведения его диагоналей: \[S_{\text{ромб}}=\dfrac12 d_1\cdot d_2\]

Определение

Высота трапеции – это перпендикуляр, проведенный из вершины одного основания к другому основанию.

 

Теорема: площадь трапеции

Площадь трапеции равна произведению полусуммы оснований на высоту.

 

Доказательство

Рассмотрим трапецию \(ABCD\) с основаниями \(BC\) и \(AD\). Проведем \(CD'\parallel AB\), как показано на рисунке:


 

Тогда \(ABCD'\) – параллелограмм.

 

Проведем также \(BH'\perp AD, CH\perp AD\) (\(BH'=CH\) – высоты трапеции).

 

Тогда \(S_{ABCD'}=BH'\cdot AD'=BH'\cdot BC, \quad S_{CDD'}=\dfrac12CH\cdot D'D\)

 

Т.к. трапеция состоит из параллелограмма \(ABCD'\) и треугольника \(CDD'\), то ее площадь равна сумме площадей параллелограмма и треугольника, то есть:

\[S_{ABCD}=S_{ABCD'}+S_{CDD'}=BH'\cdot BC+\dfrac12CH\cdot D'D=\dfrac12CH\left(2BC+D'D\right)=\] \[=\dfrac12 CH\left(BC+AD'+D'D\right)=\dfrac12 CH\left(BC+AD\right)\]