Математика ЕГЭ
Русский язык ЕГЭ
Математика 5-7
Математика ОГЭ
Информатика
Физика
Обществознание
Кликните, чтобы открыть меню

Тригонометрические формулы. Таблица углов. Формулы приведения

1. Читай полную теорию
2. Вникай в доказательства
3. Применяй на практике

Факт 1.
\(\bullet\) Таблица синусов, косинусов, тангенсов и котангенсов углов из первой четверти:


 

Факт 2.
\(\bullet\) Знаки синуса, косинуса:



Так как \(\mathrm{tg}\,\alpha=\dfrac{\sin\alpha}{\cos\alpha}\) и \(\mathrm{ctg}\,\alpha=\dfrac{\cos\alpha}{\sin\alpha}\), то тангенс и котангенс положительны в \(I\) и \(III\) четвертях и отрицательны во \(II\) и \(IV\) четвертях.  

Факт 3.
Формулы приведения.
\(\bullet\) Случай 1. Если угол можно представить в виде \(n\cdot \pi\pm \alpha\), где \(n\in\mathbb{N}\), то \[\sin(n\cdot \pi\pm \alpha)=\bigodot \sin\alpha\] где на месте \(\bigodot\) стоит знак синуса угла \(n\cdot \pi\pm \alpha\). \[\cos(n\cdot \pi\pm \alpha)=\bigodot \cos\alpha\] где на месте \(\bigodot\) стоит знак косинуса угла \(n\cdot \pi\pm \alpha\).
Знак угла можно найти, определив, в какой четверти он находится. Пользуясь таким правилом, предполагаем, что угол \(\alpha\) находится в \(I\) четверти.   \(\bullet\) Случай 2. Если угол можно представить в виде \(n\cdot \pi+\dfrac{\pi}2\pm\alpha\), где \(n\in\mathbb{N}\), то \[\sin\left(n\cdot \pi+\dfrac{\pi}2\pm \alpha\right)=\bigodot \cos\alpha\] где на месте \(\bigodot\) стоит знак синуса угла \(n\cdot \pi+\dfrac{\pi}2\pm \alpha\). \[\cos\left(n\cdot \pi+\dfrac{\pi}2\pm \alpha\right)=\bigodot \sin\alpha\] где на месте \(\bigodot\) стоит знак косинуса угла \(n\cdot \pi+\dfrac{\pi}2\pm \alpha\).
Знак определяется таким же образом, как и в случае \(1\).

 

Заметим, что в первом случае функция остается неизменной, а во втором случае — меняется (говорят, что функция меняется на кофункцию).
Алгоритм применения формул приведения для тангенса и котангенса полностью аналогичен.  

Пример 1. Найти \(\cos \dfrac{13\pi}{3}\).  

Преобразуем угол: \(\dfrac{13\pi}{3}=\dfrac{12\pi+\pi}{3}=4\pi+\dfrac{\pi}3\), следовательно, \(\cos \dfrac{13\pi}{3}=\cos \left(4\pi+\dfrac{\pi}3\right)=\cos\dfrac{\pi}3=\dfrac12\)

 

Пример 2. Найти \(\sin \dfrac{17\pi}{6}\).  

Преобразуем угол: \(\dfrac{17\pi}{6}=\dfrac{18\pi-\pi}{6}=3\pi-\dfrac{\pi}6\), следовательно, \(\sin \dfrac{17\pi}{6}=\sin \left(3\pi-\dfrac{\pi}6\right)=\sin\dfrac{\pi}6=\dfrac12\)

 

Пример 3. Найти \(\mathrm{tg}\,\dfrac{15\pi}4\).  

Преобразуем угол: \(\dfrac{15\pi}4=\dfrac{16\pi-\pi}4=4\pi-\dfrac{\pi}4\), следовательно, \(\mathrm{tg}\,\dfrac{15\pi}4=\mathrm{tg}\left(4\pi-\dfrac{\pi}4\right)= -\mathrm{tg}\,\dfrac{\pi}4=-1\)

 

Пример 4. Найти \(\mathrm{ctg}\,\dfrac{19\pi}3\).  

Преобразуем угол: \(\dfrac{19\pi}3=\dfrac{18\pi+\pi}3=6\pi+\dfrac{\pi}3\), следовательно, \(\mathrm{ctg}\,\dfrac{19\pi}3=\mathrm{ctg}\left(6\pi+\dfrac{\pi}3\right)= \mathrm{ctg}\,\dfrac{\pi}3=\dfrac{\sqrt3}3\)