а) Пусть \(O_1\) и \(O_2\) центры большей и меньшей окружностей соответственно. Так как \(O_1M\) и \(O_2M\) перпендикулярны касательной, проходящей через точку \(M\), то точки \(O_1\), \(O_2\) и \(M\) лежат на одной прямой. Пусть \(M'\) – точка пересечения этой прямой с большей окружностью, отличная от \(M\).

Докажем, что хорды данных окружностей, лежащие на одной прямой, проходящей через точку \(M\), относятся как их диаметры. Рассмотрим доказательство на примере хорд \(MS\) и \(MP\).
Рассмотрим треугольники \(MM'P\) и \(MO_1S\). Эти треугольники прямоугольные, так как \(MO_1\) – диаметр меньшей окружности (описанной около треугольника \(MO_1S\)), а \(MM'\) – диаметр большей окружности (описанной около треугольника \(MM'P\)). При этом острый угол \(O_1MS\) у них общий, следовательно, эти треугольники подобны.
Из подобия получаем требуемое: \[\dfrac{MS}{MP} = \dfrac{MO_1}{MM'}\]
Для других хорд, лежащих на прямой, проходящей через точку \(M\), утверждение доказывается аналогично.
Из доказанного следует, что \[\dfrac{MS}{MP} = \dfrac{MT}{MQ}\,.\]
Рассмотрим треугольники \(MST\) и \(MPQ\): \(\angle SMQ\) – общий, \(\dfrac{MS}{MP} = \dfrac{MT}{MQ}\), следовательно, эти треугольники подобны, откуда \(\angle MST = \angle MPQ\), следовательно, \(ST\parallel PQ\).
б) Опустим перпендикуляры \(O_1K'\) и \(O_2K\) на \(PQ\).
По теореме Пифагора \[K'O_1^2 = O_1P^2 - K'P^2\]
Так как \(O_1P = O_1Q\), то \(O_1K'\) – медиана в треугольнике \(PO_1Q\), следовательно, \(K'P = 3\), тогда \(K'O_1 = \sqrt{25 - 9} = 4\).
Так как \(MO_1\) – радиус большей окружности и диаметр меньшей, то радиус меньшей окружности равен \(0,5\cdot 5 = 2,5\)
Рассмотрим прямоугольную трапецию \(O_2O_1K'K\).

Пусть \(O_2H\) перпендикуляр к \(O_1K'\), тогда \(O_1H = O_1K' - O_2K =
4-2,5=1,5\), следовательно, по теореме Пифагора \(2 = O_2H = KK'\). Тогда \[PK = PK'+K'K=3+2=5,\qquad KQ = PK'-K'K=3-2=1.\]
Так как хорды данных окружностей, лежащие на одной прямой, проходящей через точку \(M\), относятся как их диаметры, то \(ST\) – средняя линия в треугольнике \(MPQ\), тогда \(SL\) – средняя линия в треугольнике \(MPK\) и \(LT\) – средняя линия в треугольнике \(MKQ\), следовательно, \[SL = 0,5PK=2,5,\qquad LT = 0,5KQ=0,5\,.\]
По теореме о произведении отрезков хорд \[ML\cdot LK = SL\cdot LT = 1,25=\dfrac54\,,\] откуда, с учётом равенства \(ML = LK\), получим \[ML =
\dfrac{\sqrt{5}}{2}\,.\]
Ответ:
б) \(\dfrac{\sqrt{5}}{2}\)