Математика
Русский язык

6. Геометрия на плоскости (планиметрия). Часть II

1. Вспоминай формулы по каждой теме
2. Решай новые задачи каждый день
3. Вдумчиво разбирай решения

Окружность, вписанная в многоугольник или угол

Окружность называется вписанной в выпуклый многоугольник/угол, если она касается всех сторон этого многоугольника/угла.
Тогда многоугольник/угол называется описанным около окружности.

 

\(\blacktriangleright\) В любой треугольник можно вписать окружность. Ее центр лежит на пересечении биссектрис треугольника (рис. 1).

 

Площадь описанного треугольника ищется по формуле \[{\Large{S_{\triangle}=p\cdot r}},\]

где \(p\) – полупериметр.


 

\(\blacktriangleright\) Если в прямоугольный треугольник вписана окружность, \(a, b\) – катеты, \(c\) – гипотенуза, \(r\) – радиус этой окружности, то верна формула: \[{\large{r=\dfrac{a+b-c}2}}\]

 

\(\blacktriangleright\) Если в выпуклый четырехугольник можно вписать окружность, то суммы его противоположных сторон равны.
И наоборот: если суммы противоположных сторон выпуклого четырехугольника равны, то в него можно вписать окружность (рис. 2).
Центр вписанной окружности лежит на пересечении биссектрис углов.
Площадь описанного четырехугольника ищется по формуле

\[{\large{S_{\text{опис.4-к}}=p\cdot r}},\]

где \(p\) – полупериметр.


 

\(\blacktriangleright\) Если в параллелограмм вписана окружность, то он – ромб (рис. 3).

 

\(\blacktriangleright\) Если в прямоугольник вписана окружность, то он – квадрат (рис. 4).

 

\(\blacktriangleright\) Если в угол вписана окружность, то ее центр лежит на биссектрисе этого угла (рис. 5).

Задание Новое задание
Уровень задания: Равен ЕГЭ

Боковые стороны равнобедренного треугольника равны \(5\), основание равно \(6\). Найдите радиус вписанной окружности.

Добавить задание в избранное

Известно, что для любого треугольника \(S_{\triangle}=p\cdot r\), где \(p\) – полупериметр, \(r\) – радиус вписанной окружности.
В нашем случае по формуле Герона (полупериметр \(p=8\)) \(S_{\triangle}=\sqrt{8\cdot 3\cdot 3\cdot 2}=4\cdot 3=12\). Следовательно, \[r=\dfrac Sp=\dfrac{12}{0,5(5+5+6)} = 1,5\]

Ответ:

1,5

Задание Новое задание
Уровень задания: Равен ЕГЭ

Около окружности, радиус которой равен \(3\), описан многоугольник, периметр которого равен \(20\). Найдите его площадь.

Добавить задание в избранное

Так как для любого многоугольника, в который можно вписать окружность, верно \(S=p\cdot r\), где \(p\) – полупериметр, а \(r\) – радиус вписанной окружности, то \[S=\dfrac{20}2\cdot 3=30\]

Ответ:

30

Задание Новое задание
Уровень задания: Равен ЕГЭ

Сторона правильного треугольника равна \(\sqrt3\). Найдите радиус окружности, вписанной в этот треугольник.

Добавить задание в избранное

1 способ.
Центр вписанной окружности лежит на пересечении биссектрис. Так как треугольник правильный, то его биссектрисы также являются высотами и медианами. Пусть \(H\) – точка касания окружности со стороной \(AB\) (то есть \(OH\) – радиус). Следовательно, \(OH\perp AB\) (как часть высоты) и \(OH=\frac13CH\) (как часть медианы, так как медианы точкой пересечения делятся в отношении \(2:1\), считая от вершины).



Если \(AC=2x=\sqrt3\), то \(AH=x\), следовательно, \(CH=\sqrt{4x^2-x^2}=x\sqrt3\), тогда \[OH=\dfrac13\cdot CH=\dfrac13\cdot \sqrt3\cdot \dfrac{\sqrt3}2=0,5\]

2 способ.
Площадь правильного треугольника со стороной \(a\) равна \(S=\dfrac{\sqrt3}4a^2\). Тогда по формуле \(S=p\cdot r\), где \(p\) – полупериметр, \(r\) – радиус вписанной окружности, имеем: \[r=\dfrac Sp=\dfrac{\frac{\sqrt3}4\cdot (\sqrt3)^2}{0,5(\sqrt3+\sqrt3+\sqrt3)} =0,5\]

Ответ:

0,5

Задание Новое задание
Уровень задания: Равен ЕГЭ

Радиус окружности, вписанной в правильный треугольник, равен \(\dfrac{\sqrt3}6\). Найдите сторону этого треугольника.

Добавить задание в избранное

1 способ.
Центр вписанной окружности лежит на пересечении биссектрис. Так как треугольник правильный, то его биссектрисы также являются высотами и медианами. Пусть \(H\) – точка касания окружности со стороной \(AB\) (то есть \(OH\) – радиус). Следовательно, \(OH\perp AB\) (как часть высоты) и \(OH=\frac13CH\) (как часть медианы, так как медианы точкой пересечения делятся в отношении \(2:1\), считая от вершины).



Если \(AC=2x\), то \(AH=x\), следовательно, \(CH=\sqrt{4x^2-x^2}=x\sqrt3\), тогда \[\dfrac{\sqrt3}6=OH=\dfrac13\cdot CH=\dfrac{\sqrt3}3x\quad\Rightarrow\quad x=\dfrac12\quad\Rightarrow\quad AC=2x=1\]

2 способ.
Площадь правильного треугольника со стороной \(a\) равна \(S=\dfrac{\sqrt3}4a^2\). Тогда по формуле \(S=p\cdot r\), где \(p\) – полупериметр, \(r\) – радиус вписанной окружности, имеем: \[\dfrac{\sqrt3}4a^2=\dfrac{3a}2\cdot r\quad\Rightarrow\quad a=2\sqrt3r=1\]

Ответ:

1

Задание Новое задание
Уровень задания: Равен ЕГЭ

Сторона ромба равна \(1\), острый угол равен \(30^\circ\). Найдите радиус окружности, вписанной в этот ромб.

Добавить задание в избранное

Для любого многоугольника, в который можно вписать окружность, верно \(S=p\cdot r\), где \(p\) – полупериметр, а \(r\) – радиус вписанной окружности.
\(S_{\text{ромб}}=S=a^2\cdot \sin\alpha\), где \(a\) – сторона ромба, \(\alpha\) – его угол. Следовательно, \(S=1^2\cdot \frac12=\frac12\). Полупериметр ромба равен \(2\). Тогда \[r=\dfrac Sp=0,25\]

Ответ:

0,25

Задание Новое задание
Уровень задания: Равен ЕГЭ

Острый угол ромба равен \(30^\circ\), радиус вписанной в этот ромб окружности равен \(2\). Найдите сторону ромба.

Добавить задание в избранное

Для любого многоугольника, в который можно вписать окружность, верно \(S=p\cdot r\), где \(p\) – полупериметр, а \(r\) – радиус вписанной окружности.
\(S_{\text{ромб}}=S=a^2\cdot \sin\alpha\), где \(a\) – сторона ромба, \(\alpha\) – его угол. Следовательно, \(S=a^2\cdot \frac12=\frac12a^2\). Полупериметр ромба равен \(2a\). Тогда \[\dfrac12a^2=2a\cdot 2\quad\Rightarrow\quad a=8\]

Ответ:

8

Задание Новое задание
Уровень задания: Равен ЕГЭ

Найдите сторону правильного шестиугольника, описанного около окружности, радиус которой равен \(\sqrt3\).

Добавить задание в избранное

Для любого многоугольника, в который можно вписать окружность, верно \(S=p\cdot r\), где \(p\) – полупериметр, а \(r\) – радиус вписанной окружности.
Площадь правильного шестиугольника со стороной \(a\) равна \(S=\dfrac{3\sqrt3}2a^2\), полупериметр равен \(3a\), тогда \[\dfrac{3\sqrt3}2a^2=3a\cdot \sqrt3\quad\Rightarrow\quad a=2\]

Ответ:

2

На этапе подготовки к ЕГЭ старшеклассники повторяют базовые определения и формулы, в том числе и по теме «Окружность, вписанная в многоугольник или угол». Достаточно подробное изучение данного раздела планиметрии осуществляется, как правило, в средней школе. В связи с этим необходимость повторения основных формул и понятий по теме «Окружность, вписанная в угол или многоугольник» на этапе подготовки к ЕГЭ возникает у многих выпускников. Поняв принцип решения подобных заданий, старшеклассники смогут рассчитывать на получение достаточно высоких баллов по итогам сдачи единого государственного экзамена.

Готовьтесь к ЕГЭ вместе с образовательным порталом «Школково»

Занимаясь перед прохождением аттестационного испытания, многие старшеклассники сталкиваются с проблемой поиска базовых понятий и формул для нахождения радиуса окружности, вписанной в правильный многоугольник, и других параметров. Далеко не всегда их легко найти в Интернете. А школьного учебника может просто не оказаться под рукой в нужное время. Для того чтобы ликвидировать пробелы в знаниях по этому и другим математическим разделам, обратитесь к образовательному проекту «Школково». На нашем сайте представлен весь необходимый материал, изложенный доступно и понятно. Какими свойствами обладает окружность, вписанная в угол и многоугольник, и какие формулы необходимо знать для успешного решения задач по данной теме? Ответы на эти и другие вопросы вы найдете на сайте «Школково» в разделе «Теоретическая справка».

Чтобы подготовка к единому госэкзамену была действительно эффективной, рекомендуем также попрактиковаться в решении соответствующих задач. Большая база заданий представлена в разделе «Каталог». Для каждого упражнения наши специалисты прописали подробный ход решения и указали правильный ответ. Перечень задач на сайте постоянно дополняется и обновляется.