Математика
Русский язык

16. Задачи по планиметрии

1. Вспоминай формулы по каждой теме
2. Решай новые задачи каждый день
3. Вдумчиво разбирай решения

Задачи по планиметрии прошлых лет

Задание 1
Уровень задания: Равен ЕГЭ

Прямая, проходящая через середину \(M\) гипотенузы \(AB\) прямоугольного треугольника \(ABC\), перпендикулярна \(CM\) и пересекает катет \(AC\) в точке \(K\). При этом \(AK:KC=1:2\).

а) Докажите, что \(\angle BAC=30^\circ\).

б) Пусть прямые \(MK\) и \(BC\) пересекаются в точке \(P\), а прямые \(AP\) и \(BK\) – в точке \(Q\). Найдите \(KQ\), если \(BC=2\sqrt3\).

 

(ЕГЭ 2017, официальный пробный 21.04.2017)

Добавить задание в избранное

а) Пусть \(AK=x, \ KC=2x\). Проведем \(BL\parallel MK\). Тогда по теореме Фалеса \[\dfrac{BM}{MA}=\dfrac11=\dfrac{LK}{KA} \quad\Rightarrow\quad LK=KA=x \quad\Rightarrow \quad CL=x.\]


Тогда также по теореме Фалеса: \[\dfrac{CL}{LK}=\dfrac11=\dfrac{CO}{OM} \quad\Rightarrow\quad CO=OM.\] Следовательно, \(BO\) – медиана и высота (\(MK\perp CM, \ BO\parallel MK \quad\Rightarrow\quad BO\perp CM\)), следовательно, \(\triangle CBM\) равнобедренный и \(CB=BM\). Следовательно, \(CB=\frac12BA\). Так как катет, равный половине гипотенузы, лежит против угла в \(30^\circ\), то \(\angle BAC=30^\circ\).

 

б) Рассмотрим \(\triangle PMC\): \(\angle PMC=90^\circ\). Так как \(BM=BC\), то \(BM=BC=BP\), то есть \(B\) – середина \(CP\) (\(\angle BCM=\angle BMC=60^\circ\), следовательно, \(\angle CPM=30^\circ=\angle PMB\), следовательно, \(BP=BM\)).
Проведем \(BS\parallel AP\). Тогда \(BS\) – средняя линия треугольника \(APC\). Значит, \(CS=SA\).



Из прямоугольного \(\triangle ABC\): \[\mathrm{tg}\,30^\circ=\dfrac{BC}{AC} \quad\Rightarrow\quad AC= BC\cdot \sqrt3=6.\] Следовательно, \(CS=SA=3\), а так как \(CK:KA=2:1\), то \(KA=2\) и \(SK=1\).
Заметим, что \(\triangle BKS\sim \triangle QKA\) по двум углам (\(\angle BKS=\angle QKA\) как вертикальные, \(\angle BSK=\angle QAK\) как накрест лежащие при \(AQ\parallel BS\) и \(SA\) секущей). Следовательно, \[\dfrac{SK}{AK}=\dfrac12=\dfrac{BK}{KQ} \quad\Rightarrow\quad KQ=2BK.\] Найдем \(BK\).
По теореме Пифагора из \(\triangle BKC\): \[BK=\sqrt{BC^2+KC^2}=\sqrt{(2\sqrt3)^2+4^2}=2\sqrt{7}\] Следовательно, \[KQ=4\sqrt7.\]

Ответ:

б) \(4\sqrt7\)

Задание 2
Уровень задания: Равен ЕГЭ

В трапецию \(ABCD\) с основаниями \(AD\) и \(BC\) вписана окружность с центром в \(O\).

а) Докажите, что \(\sin \angle AOD=\sin\angle BOC\).

б) Найдите площадь трапеции, если \(\angle BAD=90^\circ\), а основания равны \(5\) и \(7\).

 

(ЕГЭ 2017, резервный день)

Добавить задание в избранное

а) Так как окружность вписана в трапецию, то ее центр лежит на пересечении биссектрис углов трапеции.



Так как \(\angle A+\angle B=180^\circ\), то \(\frac12\cdot (\angle A+\angle B)=90^\circ\). Следовательно, \(\angle AOB=180^\circ-90^\circ=90^\circ\).
Аналогично доказывается, что \(\angle COD=90^\circ\).
Следовательно, \(\angle BOC+\angle AOD=360^\circ-90^\circ-90^\circ=180^\circ\). Следовательно, \(\sin \angle BOC=\sin \angle AOD\).

 

б) Так как в трапеции \(\angle A=\angle B=90^\circ\), то \(\angle BAO=\angle ABO=45^\circ\), следовательно, \(\triangle AOB\) – прямоугольный и равнобедренный.
Пусть \(M, N, K, L\) – точки касания окружности со сторонами \(AB, BC, CD, AD\) соответственно.
Следовательно, \(OM\perp AB\) как радиус, проведенный в точку касания. Так как \(\triangle AOB\) равнобедренный, то \(OM\) – медиана, следовательно, \(AM=MB\). Как отрезки касательных \(AM=AL, BM=BN\). Следовательно, \(AL=AM=BM=BN=x\). Пусть также \(NC=CK=y\), \(DL=DK=z\). Тогда \(x+y=5\), \(x+z=7\).



Тогда \(AB=2x\) – высота трапеции. Следовательно, нужно найти \(x\).
Проведем \(CH\perp AD\). Тогда \(HD=AD-BC=2\), а \(CH=AB=2x\). Тогда по теореме Пифагора из \(\triangle GHD\): \[(2x)^2+2^2=(y+z)^2\] Так как \(y=5-x\), \(z=7-x\), то получаем уравнение \[4x^2+4=(12-2x)^2\quad\Rightarrow\quad x=\dfrac{35}{12}\] Следовательно, площадь трапеции равна \[S=\dfrac{5+7}2\cdot 2x=35.\]

Ответ:

б) 35

Задание 3
Уровень задания: Равен ЕГЭ

В трапецию \(ABCD\) с большим основанием \(AD\) вписана окружность, которая касается боковых сторон \(AB\) и \(CD\) в точках \(N\) и \(M\) соответственно, причем \(AN:NB=8:1\), \(DM:MC=2:1\).
а) Докажите, что \(AD=4BC\).
б) Найдите \(MN\), если известно, что радиус данной окружности равен \(\sqrt6\).

 

(ЕГЭ 2017, резервный день)

Добавить задание в избранное

а) Продлим боковые стороны трапеции до пересечения в точке \(P\).



Так как \(AN:NB=8:1\), то можно принять \(AN=8x, NB=x\). Аналогично \(CM=y, MD=2y\). Так как отрезки касательных, проведенных из одной точки к окружности, равны, то \(BK=x, CK=y, AL=8x, LD=2y\), где \(K, L\) – точки касания окружности с основаниями.
Аналогично \(PN=PM\) как отрезки касательных, проведенных из одной точки к окружности.
Так как \(\triangle APD\sim \triangle BPC\) по двум углам, то \[\dfrac{PA}{PB}=\dfrac{AD}{BC}\quad\Rightarrow\quad \dfrac{PB+AB}{PB}=\dfrac{AD}{BC}\quad\Rightarrow\quad PB=\dfrac{AB\cdot BC}{AD-BC}=\dfrac{9x\cdot (x+y)}{8x+2y-x-y}\] По той же причине \[\dfrac{PD}{PC}=\dfrac{AD}{BC}\quad\Rightarrow\quad \dfrac{PC+CD}{PC}=\dfrac{AD}{BC}\quad\Rightarrow\quad PC= \dfrac{3y\cdot (x+y)}{7x+y}\] Так как \(PN=PM\), то \[x+\dfrac{9x\cdot (x+y)}{7x+y}=y+\dfrac{3y\cdot (x+y)}{7x+y} \quad\Leftrightarrow\quad 4x^2=y^2\quad\Rightarrow\quad y=2x\] Таким образом, \(AD=12x\), \(BC=3x\), то есть \(AD=4BC\).

 

б) Из пункта а) следует, что \(PB=3x, PC=2x\). Обозначим \(\angle APD=\alpha\).



Тогда по теореме косинусов из \(\triangle NPM\): \[MN=\sqrt{(4x)^2+(4x)^2-2\cdot 4x\cdot 4x\cdot \cos\alpha}= 4x\cdot \sqrt{2-2\cos\alpha}\] Найдем \(x\) и \(\cos \alpha\). По теореме косинусов из \(\triangle APD\): \[AD^2=AP^2+DP^2-2\cdot AP\cdot DP\cdot \cos\alpha \quad\Rightarrow\quad \cos\alpha=\dfrac{64x^2}{2\cdot 12x\cdot 8x}=\dfrac13\quad\Rightarrow\quad \sin \alpha=\dfrac{2\sqrt2}3\] По формуле \(S=p\cdot r\) для \(\triangle APD\): \[\dfrac 12\cdot AP\cdot DP\cdot \sin \alpha=\dfrac{AP+PD+AD}2\cdot \sqrt6 \quad\Rightarrow\quad x=\dfrac{\sqrt3}2\] Таким образом, \[MN=4\]

Ответ:

б) \(4\)

Задание 4
Уровень задания: Равен ЕГЭ

Две окружности касаются внутренним образом в точке \(A\), причем меньшая окружность проходит через центр \(O\) большей. Диаметр \(BC\) большей окружности вторично пересекает меньшую окружность в точке \(M\), отличной от точки \(A\). Лучи \(AO\) и \(AM\) вторично пересекают большую окружность в точках \(P\) и \(Q\) соответственно. Точка \(C\) лежит на дуге \(AQ\) большей окружности, не содержащей точку \(P\).

а) Докажите, что прямые \(PQ\) и \(BC\) параллельны.

б) Известно, что \(\sin \angle AOC=\dfrac{\sqrt{15}}4\), прямые \(PC\) и \(AQ\) пересекаются в точке \(K\). Найдите \(QK:KA\).

 

(ЕГЭ 2017, основная волна)

Добавить задание в избранное

а) Рассмотрим \(\triangle PQA\) и \(\triangle OMA\): \(\angle PQA=\angle OMA=90^\circ\), так как опираются на диаметры \(PA\) и \(OA\) соответственно. \(\angle PAQ\) – общий. Следовательно, треугольники подобны по двум углам. Значит, \(\angle AOM=\angle APQ\) – соответственные углы при \(PQ\) и \(OM\) и секущей \(PA\). Следовательно, \(PQ\parallel OM\quad \Rightarrow\quad PQ\parallel BC.\)

 

б) Из предыдущего пункта следует, что коэффициент подобия треугольников \(PQA\) и \(OMA\) равен \(PA:OA=2:1\). Следовательно, \(QM=MA\). Обозначим \(OM=a\), \(MA=b\), \(OA=c\). Найдем \(QK:KM\).
Заметим, что по двум углам подобны прямоугольные треугольники \(PQK\) и \(MCK\). Следовательно, \[QK:KM=PQ:MC=2OM:MC\] Так как \(OC=OA\) – радиус большого круга, то \[QK:KM=2a:(c-a)\] Из прямоугольного \(\triangle AOM\): так как \(\sin \angle AOM=\dfrac{\sqrt{15}}4\), то можно принять \(b=\sqrt{15}x\), \(c=4x\), откуда по теореме Пифагора \(a=x\). Следовательно, \[QK:KM=2x:(4x-x)=2:3\] Так как \(QK+KM=MA\), то, если \(QK=2y\), \(KM=3y\), то \[QK:KA=2y:8y=1:4\]

Ответ:

б) \(1:4\)

Задание 5
Уровень задания: Равен ЕГЭ

В прямоугольном треугольнике \(ABC\) проведена высота \(CH\) из вершины прямого угла. В треугольники \(ACH\) и \(BCH\) вписаны окружности с центрами \(O_1\) и \(O_2\) соответственно, касающиеся прямой \(CH\) в точках \(M\) и \(N\) соответственно.

а) Докажите, что прямые \(AO_1\) и \(CO_2\) взаимно перпендикулярны.

б) Найдите площадь четырехугольника \(MO_1NO_2\), если известно, что \(AC=20\), \(BC=15\).

 

(ЕГЭ 2017, основная волна)

Добавить задание в избранное

а) Так как \(CH\) – высота из прямого угла, то \(\angle HAC=\angle HCB\). Так как центры вписанных окружностей лежат на биссектрисах углов, то \(CO_2\) и \(AO_1\) – биссектрисы углов \(HCB\) и \(HAC\) соответственно.
Рассмотрим \(\triangle HAL\) и \(\triangle CKL\). По доказанному выше \(\angle HAL=\angle KCL\). \(\angle HLA=\angle KLC\) как вертикальные, следовательно, \(\angle CKL=\angle LHA=90^\circ\), чтд.


 

б) \(O_1M\) и \(O_2N\) перпендикулярны \(CH\) как радиусы, проведенные в точки касания. Следовательно, будем искать \(S_{MO_2NO_1}\) как \(S_{O_1MN}+S_{O_2MN}\), где \(\triangle O_1MN\) и \(O_2MN\) – прямоугольные.

 

Рассмотрим произвольный прямоугольный треугольник и вписанную в него окружность:



Пусть \(K, M, N\) – точки касания окружности со сторонами. Тогда \(OK\perp AC\), \(ON\perp BC\). Следовательно, \(CKON\) – прямоугольник. Но так как к тому же смежные стороны его равны (\(OK=ON\) как радиусы), то \(CKON\) – квадрат. Следовательно, если \(OK=r\) – радиус, то \(CK=CN=r\).
Заметим, что \(AK=AM\) и \(BN=BM\) как отрезки касательных, проведенных из одной точки к окружности. Следовательно, \(BC+AC=BN+r+r+AK=AB+2r\), откуда \[r=\dfrac{BC+AC-AB}2\]

Применим полученную формулу для нашего случая. Тогда: \[\begin{aligned} & O_1M=\dfrac{CH+HA-AC}2\\[2ex] & O_2N=\dfrac{CH+HB-BC}2\end{aligned}\] Следовательно, нужно найти \(HA, HB, CH\).
По теореме Пифагора \(AB=25\). Из подобия \(\triangle CHA\sim \triangle ABC\) получаем: \[\dfrac{HA}{AC}=\dfrac{AC}{AB}\quad\Rightarrow\quad HA=16\] Тогда \(HB=AB-HA=9\).
По свойству высоты треугольника, опущенной из вершины прямого угла \[CH=\sqrt{HA\cdot HB}=12\] Таким образом, \[\begin{aligned} & O_1M=\dfrac{CH+HA-AC}2=4\\[2ex] & O_2N=\dfrac{CH+HB-BC}2=3\end{aligned}\]

Когда мы рассматривали произвольный прямоугольный треугольник и вписанную в него окружность, мы установили, что \(CKON\) – квадрат. В нашем случае это значит, что \(O_1M=MH\) и \(O_2N=NH\). Следовательно, \(MN=4-3=1\).
Таким образом, \[S_{MO_2NO_1}=\dfrac12\cdot MN\cdot (O_1M+O_2N)=3,5\]

Ответ:

б) 3,5

Задание 6
Уровень задания: Равен ЕГЭ

Точка \(E\) – середина боковой стороны \(CD\) трапеции \(ABCD\). На ее стороне \(AB\) взята точка \(K\) так, что прямые \(CK\) и \(AE\) параллельны. Отрезки \(CK\) и \(BE\) пересекаются в точке \(O\).

а) Докажите, что \(CO=OK\).

б) Найдите отношение оснований трапеции \(BC:AD\), если площадь треугольника \(BCK\) составляет \(\dfrac9{64}\) площади всей трапеции \(ABCD\).

 

(ЕГЭ 2017, основная волна)

Добавить задание в избранное

а) Продлим \(AE\) и \(BC\) до пересечения в точке \(P\):


Тогда \(\angle AED=\angle CEP\) как вертикальные, \(\angle ADE=\angle PCE\) как накрест лежащие при \(AD\parallel BP\) и \(CD\) секущей. Следовательно, по стороне и двум прилежащим углам \(\triangle AED=\triangle CEP\). Тогда \(AD=CP\), \(AE=EP\).
Так как \(CK\parallel AP\), то \(\triangle BKO\sim \triangle ABE\) и \(CBO\sim \triangle PBE\), следовательно, \[\dfrac{KO}{AE}=\dfrac{BO}{BE}=\dfrac{OC}{EP} \quad\Rightarrow\quad \dfrac{KO}{OC}=\dfrac{AE}{EP}=1\] Таким образом, \(KO=OC\), чтд.

 

б) Так как \(\triangle AED=\triangle CEP\), то \(S_{ABCD}=S_{ABP}\). Таким образом, \[S_{BCK}:S_{ABP}=9:64\] Так как \(\triangle BCK\sim \triangle ABP\), то их площади относятся как квадрат коэффициента подобия, следовательно, \[k=\sqrt{\dfrac9{64}}=\dfrac38=\dfrac{BC}{BP}\] Следовательно, \(BC:BP=3:8\), а значит \(BC:AD=BC:CP=3:5\).

Ответ:

б) \(3:5\)

Задание 7
Уровень задания: Равен ЕГЭ

Две окружности с центрами \(O_1\) и \(O_2\) пересекаются в точках \(A\) и \(B\), причем точки \(O_1\) и \(O_2\) лежат по разные стороны от прямой \(AB\). Продолжения диаметра \(CA\) первой окружности и хорды \(CB\) этой окружности пересекают вторую окружность в точках \(D\) и \(E\) соответственно.

а) Докажите, что треугольники \(BCD\) и \(O_1AO_2\) подобны.

б) Найдите \(AD\), если \(\angle DAE=\angle BAC\), радиус второй окружности втрое больше радиуса первой окружности и \(AB=3\).

 

(ЕГЭ 2017, основная волна)

Добавить задание в избранное

а) Заметим, что \(\triangle O_1AO_2=\triangle O_1BO_2\) (по трем сторонам), следовательно, \(O_1O_2\) – биссектриса углов \(\angle BO_1A\) и \(BO_2A\). Следовательно, \(\angle BCA=\frac12\angle BO_1A=\angle O_2O_1A\).
Полностью аналогично доказывается, что \(\angle O_1O_2A=\angle BDA\). Следовательно, по двум углам \(\triangle BCD\sim \triangle O_1AO_2\).


 

б) Заметим, что точки \(A, O_2\) и \(E\) лежат на одной прямой. Действительно, пусть это не так:



Так как в предыдущем пункте мы доказали, что \(\angle O_2O_1A=\angle BCA\), то \(CE\parallel O_1O_2\). Следовательно, соответственные углы при пересечении параллельных прямых \(O_1F\) и \(BE\) секущей \(AE\) должны быть равны, то есть \(\angle AFO_1=\angle AEB\). Но тогда \(\angle AO_2O_1=\angle AFO_1\), откуда следует, что прямые \(AO_2\) и \(AF\) должны быть параллельны при секущей \(O_2F\). Но это невозможно, так как прямые имеют общую точку. Чтд.   Таким образом, мы доказали, что \(\angle DAE=\angle DAO_2\).



Проведем \(O_2K\perp AD\). Так как радиус (в данном случае часть радиуса \(O_2K\)), перпендикулярный хорде, делит ее пополам, то \(AK=\frac12AD\). Заметим, что \(\angle ABC=90^\circ\) как опирающийся на диаметр \(AC\). Пусть \(O_1A=x\), \(O_2A=3x\). Тогда \(\triangle ABC\sim \triangle AKO_2\) (как прямоугольные с одинаковым острым оранжевым углом): \[\dfrac{AO_2}{AC}=\dfrac{\frac12AD}{AB}\quad\Rightarrow \quad AD=\dfrac{3x\cdot 3}{2x\cdot \frac12}=9\]

Ответ:

б) 9