Прямоугольный треугольник – это треугольник, один из углов которого равен \(90^\circ\) (прямой).
Сторона, лежащая напротив прямого угла, называется гипотенузой (\(AB\)), а две другие стороны — катетами (\(AC\) и \(BC\)).

\(\bullet\) Катет, лежащий против угла \(30^\circ\), равен половине гипотенузы.
Следовательно, если, например, \(\angle A=30^\circ\), то \(BC=\dfrac12AB\).
\(\bullet\) Сумма острых углов прямоугольного треугольника равна \(90^\circ\): \(\angle A+\angle B=90^\circ\).
Следовательно, если в прямоугольном треугольнике один из острых углов равен \(45^\circ\), то такой треугольник является равнобедренным.
\(\bullet\) Если в прямоугольном треугольнике \(ABC\) провести высоту \(CH\) из прямого угла, то \(\angle BAC=\angle BCH\) и \(\angle
ABC=\angle
ACH\):

\(\bullet\) Теорема Пифагора: квадрат длины гипотенузы равен сумме квадратов длин катетов: \[AB^2=AC^2+BC^2\]
\(\bullet\) \(\triangle ABC\sim \triangle AHC\sim \triangle BHC\)
\(\bullet\) Высота, проведенная из вершины прямого угла, есть среднее геометрическое (среднее пропорциональное) отрезков, на которые делится гипотенуза этой высотой: \[CH=\sqrt{AH\cdot HB}\]