Математика
Русский язык

11. Сюжетные текстовые задачи

1. Вспоминай формулы по каждой теме
2. Решай новые задачи каждый день
3. Вдумчиво разбирай решения

Задачи на круговое движение

Верны те же формулы: \[{\large{S=v\cdot t \quad \quad \quad v=\dfrac St \quad \quad \quad t=\dfrac Sv}}\]
\(\blacktriangleright\) Пусть два тела начали движение из одной точки в одном направлении со скоростями \(v_1>v_2\).

 

Тогда если \(l\) — длина круга, \(t_1\) — время, через которое они окажутся в одной точке в первый раз, то:

 

То есть за \(t_1\) первое тело пройдет расстояние на \(l\) большее, чем второе тело.

 

Если \(t_n\) — время, через которое они в \(n\)–ый раз окажутся в одной точке, то справедлива формула: \[{\large{t_n=n\cdot t_1}}\]

\(\blacktriangleright\) Пусть два тела начали движение из разных точек в одном направлении со скоростями \(v_1>v_2\).

 

Тогда задача легко сводится к предыдущему случаю: нужно найти сначала время \(t_1\), через которое они окажутся в одной точке в первый раз.
Если на момент начала движения расстояние между ними \(\buildrel\smile\over{A_1A_2}=s\), то:

Задание 1
Уровень задания: Легче ЕГЭ

Два спортсмена стартуют в одном направлении из диаметрально противоположных точек круговой дорожки. Они бегут с разными непостоянными скоростями. Известно, что в тот момент, когда спортсмены впервые поравнялись, они прекратили тренировку. На сколько кругов больше пробежал спортсмен с большей средней скоростью, чем другой спортсмен?

Добавить задание в избранное

Назовём спортсмена с большей средней скоростью первым. Сначала первому спортсмену нужно было пробежать полкруга, чтобы достичь места старта второго спортсмена. После этого ему предстояло пробежать столько же, сколько пробежал второй спортсмен (грубо говоря, после того, как первый спортсмен пробежал полкруга, ему до встречи надо было пробежать каждый метр дорожки, который пробежал второй спортсмен, причём столько же раз, сколько этот метр пробежал второй).

Таким образом, первый спортсмен пробежал на \(0,5\) круга больше.

Ответ: 0,5

Задание 2
Уровень задания: Легче ЕГЭ

Кот Мурзик бегает от пса Шарика по кругу. Скорости Мурзика и Шарика постоянны. Известно, что Мурзик бежит в \(1,5\) раза быстрее Шарика и за \(10\) минут они в сумме пробегают два круга. За сколько минут Шарик пробежит один круг?

Добавить задание в избранное

Так как Мурзик бежит в \(1,5\) раза быстрее Шарика, то за \(10\) минут Мурзик и Шарик в сумме пробегают такое же расстояние, которое пробежал бы Шарик за \(10\cdot (1 + 1,5) = 25\) минут. Следовательно, Шарик пробегает два круга за \(25\) минут, тогда один круг Шарик пробегает за \(12,5\) минут

Ответ: 12,5

Задание 3
Уровень задания: Равен ЕГЭ

Из точки A круговой орбиты далёкой планеты одновременно в одном направлении вылетели два метеорита. Скорость первого метеорита на 10000 км/ч больше, чем скорость второго. Известно, что впервые после вылета они встретились через 8 часов. Найдите длину орбиты в километрах.

Добавить задание в избранное

В тот момент, когда они впервые встретились, разница расстояний, которые они пролетели, равна длине орбиты.

За 8 часов разница стала \(8 \cdot 10000 = 80000\) км.

Ответ: 80000

Задание 4
Уровень задания: Равен ЕГЭ

Вор, укравший сумочку, убегает от хозяйки сумочки по круговой дороге. Скорость вора на 0,5 км/ч больше, чем скорость хозяйки сумочки, которая бегает за ним. Через сколько часов вор догонит хозяйку сумочки во второй раз, если длина дороги, по которой они бегают, равна 300 метрам (считайте, что в первый раз он её догнал уже после кражи сумочки)?

Добавить задание в избранное

Первый способ:

Вор догонит хозяйку сумочки во второй раз в тот момент, когда расстояние, которое он пробежит, станет на 600 метров больше, чем расстояние, которое пробежит хозяйка сумочки (с момента кражи).

Так как его скорость на \(0,5\) км/ч больше, то за час он пробегает на 500 метров больше, тогда за \(1 : 5 = 0,2\) часа он пробегает на \(500 : 5 = 100\) метров больше. На 600 метров больше он пробежит за \(1 + 0,2 = 1,2\) часа.

Второй способ:

Пусть \(v\) км/ч – скорость хозяйки сумочки, тогда
\(v + 0,5\) км/ч – скорость вора.
Пусть \(t\) ч – время, через которое вор догонит хозяйку сумочки во второй раз, тогда
\(v\cdot t\) – расстояние, которое пробежит хозяйка сумочки за \(t\) ч,
\((v + 0,5)\cdot t\) – расстояние, которое пробежит вор за \(t\) ч.
Вор догонит хозяйку сумочки во второй раз в тот момент, когда пробежит ровно на 2 круга больше неё (то есть на \(600\) м = \(0,6\) км), тогда \[(v + 0,5)\cdot t - v\cdot t = 0,6\qquad\Leftrightarrow\qquad 0,5\cdot t = 0,6,\] откуда \(t = 1,2\) ч.

Ответ: 1,2

Задание 5
Уровень задания: Равен ЕГЭ

Два мотоциклиста стартуют одновременно из одной точки круговой трассы в разных направлениях. Скорость первого мотоциклиста в два раза больше, чем скорость второго. Через час после старта они встретились в третий раз (считайте, что в первый раз они встретились уже после старта). Найдите скорость первого мотоциклиста, если длина трассы 40 км. Ответ дайте в км/ч.

Добавить задание в избранное

В тот момент, когда мотоциклисты встретились в третий раз, суммарное расстояние, которое они проехали, было \(3 \cdot 40 = 120\) км.

Так как скорость первого в 2 раза больше, чем скорость второго, то он проехал из 120 км часть в 2 раза большую, чем второй, то есть 80 км.

Так как встретились в третий раз они через час, то 80 км первый проехал за час. Его скорость 80 км/ч.

Ответ: 80

Задание 6
Уровень задания: Равен ЕГЭ

Два бегуна стартуют одновременно в одном направлении из двух диаметрально противоположных точек круговой дорожки, длина которой 400 метров. Через сколько минут бегуны поравняются в первый раз, если первый бегун за час пробегает на 1 километр больше, чем второй?

Добавить задание в избранное

За час первый бегун пробегает на 1000 метров больше, чем второй, значит на 100 метров больше он пробежит за \(60 : 10 = 6\) минут.

Изначальное расстояние между бегунами равно 200 метров. Они поравняются, когда первый бегун пробежит на 200 метров больше, чем второй.

Это произойдёт через \(2 \cdot 6 = 12\) минут.

Ответ: 12

Задание 7
Уровень задания: Равен ЕГЭ

Из города M по круговой дороге длиной 220 километров вышел турист, а через 55 минут следом за ним из города M отправился автомобилист. Через 5 минут после отправления он догнал туриста в первый раз, а еще через 4 часа после этого догнал его во второй раз. Найдите скорость туриста. Ответ дайте в км/ч.

Добавить задание в избранное

Первый способ:

После первой встречи автомобилист догнал туриста (во второй раз) через 4 часа. К моменту второй встречи автомобилист проехал на круг больше, чем прошёл турист (то есть на \(220\) км).

Так как за эти 4 часа автомобилист обогнал туриста на \(220\) км, то скорость автомобилиста на \(220 : 4 = 55\) км/ч больше, чем скорость туриста.

Пусть теперь скорость туриста \(v\) км/ч, тогда до первой встречи он успел пройти \[v \cdot \left(\dfrac{55}{60} + \dfrac{5}{60}\right) = v\ \text{км},\] автомобилист успел проехать \[(v + 55)\dfrac{5}{60} = \dfrac{v + 55}{12}\ \text{км}.\] Тогда \[\dfrac{v + 55}{12} = v,\] откуда находим \(v = 5\) км/ч.

Второй способ:

Пусть \(v\) км/ч – скорость туриста.
Пусть \(w\) км/ч – скорость автомобилиста. Так как \(55\) минут \(+ 5\) минут \(= 1\) час, то
\(v\cdot 1\) км – расстояние, которое прошёл турист до первой встречи. Так как \(5\) минут \(= \dfrac{1}{12}\) часа, то
\(w\cdot \dfrac{1}{12}\) км – расстояние, которое проехал автомобилист до первой встречи. Расстояния, которые они проехали до первой встречи, равны: \[w\cdot \dfrac{1}{12} = v\cdot 1.\] За следующие 4 часа автомобилист проехал больше, чем прошёл турист на круг (на \(220\) км), тогда \(w\cdot 4 = v\cdot 4 + 220\), итого: \[v = \dfrac{1}{12}w,\] что равносильно \(w = 12\cdot v\)
\(4w = 4v + 220\), откуда с учётом предыдущего уравнения \[48v = 4v + 220.\] Решая эту систему на \(v\) и \(w\), находим \(v = 5\) км/ч, \(w = 60\) км/ч.

Ответ: 5

Как научиться быстро и правильно решать задачи на круговое движение в ЕГЭ по математике? Этот вопрос в преддверии аттестационного испытания возникает у школьников все чаще. О том, как максимально эффективно подготовиться к экзамену, расскажет образовательный портал «Школково».

Основные моменты

В задачах ЕГЭ на круговое движение перемещение могут осуществлять 2 объекта. В этом случае следует учитывать их скорость сближения или удаления.

\[T=\dfrac S {V_1-V_2}\] \[T=\dfrac S {V_1+V_2}\]

При использовании в упражнении величин, которые связаны с расстоянием (скорость, длина круга), решить их можно путем сведения к перемещению по прямой.

\[S=V\cdot t\]

Наибольшую сложность у школьников Москвы и других городов, как показывает практика, вызывают задачи на круговое движение в ЕГЭ, поиск ответа в которых связан с применением угла. Для решения упражнения длину окружности можно задать как часть круга.

Повторить эти и другие алгебраические формулы вы можете в разделе «Теоретическая справка». Для того чтобы научиться применять их на практике, прорешайте упражнения по данной теме в «Каталоге».