Математика ЕГЭ
Русский язык ЕГЭ
Математика 5-7
Математика ОГЭ
Кликните, чтобы открыть меню

11. Сюжетные текстовые задачи

1. Вспоминай формулы по каждой теме
2. Решай новые задачи каждый день
3. Вдумчиво разбирай решения

Задачи на круговое движение

Верны те же формулы: \[{\large{S=v\cdot t \quad \quad \quad v=\dfrac St \quad \quad \quad t=\dfrac Sv}}\]
\(\blacktriangleright\) Пусть два тела начали движение из одной точки в одном направлении со скоростями \(v_1>v_2\).

 

Тогда если \(l\) — длина круга, \(t_1\) — время, через которое они окажутся в одной точке в первый раз, то:

 

То есть за \(t_1\) первое тело пройдет расстояние на \(l\) большее, чем второе тело.

 

Если \(t_n\) — время, через которое они в \(n\)–ый раз окажутся в одной точке, то справедлива формула: \[{\large{t_n=n\cdot t_1}}\]

\(\blacktriangleright\) Пусть два тела начали движение из разных точек в одном направлении со скоростями \(v_1>v_2\).

 

Тогда задача легко сводится к предыдущему случаю: нужно найти сначала время \(t_1\), через которое они окажутся в одной точке в первый раз.
Если на момент начала движения расстояние между ними \(\buildrel\smile\over{A_1A_2}=s\), то:

Задание 1 #2677
Уровень задания: Легче ЕГЭ

Два спортсмена стартуют в одном направлении из диаметрально противоположных точек круговой дорожки. Они бегут с разными непостоянными скоростями. Известно, что в тот момент, когда спортсмены впервые поравнялись, они прекратили тренировку. На сколько кругов больше пробежал спортсмен с большей средней скоростью, чем другой спортсмен?

Решение скрыто, так как задача находится в активном домашнем задании марафона.

Подключиться к марафону можно тут: Марафон Школково - ВКонтакте

Решение будет опубликовано 29.04.2019 в 12:00

Задание 2 #2115
Уровень задания: Легче ЕГЭ

Кот Мурзик бегает от пса Шарика по кругу. Скорости Мурзика и Шарика постоянны. Известно, что Мурзик бежит в \(1,5\) раза быстрее Шарика и за \(10\) минут они в сумме пробегают два круга. За сколько минут Шарик пробежит один круг?

Решение скрыто, так как задача находится в активном домашнем задании марафона.

Подключиться к марафону можно тут: Марафон Школково - ВКонтакте

Решение будет опубликовано 29.04.2019 в 12:00

Задание 3 #823
Уровень задания: Равен ЕГЭ

Из точки A круговой орбиты далёкой планеты одновременно в одном направлении вылетели два метеорита. Скорость первого метеорита на 10000 км/ч больше, чем скорость второго. Известно, что впервые после вылета они встретились через 8 часов. Найдите длину орбиты в километрах.

Решение скрыто, так как задача находится в активном домашнем задании марафона.

Подключиться к марафону можно тут: Марафон Школково - ВКонтакте

Решение будет опубликовано 29.04.2019 в 12:00

Задание 4 #821
Уровень задания: Равен ЕГЭ

Вор, укравший сумочку, убегает от хозяйки сумочки по круговой дороге. Скорость вора на 0,5 км/ч больше, чем скорость хозяйки сумочки, которая бегает за ним. Через сколько часов вор догонит хозяйку сумочки во второй раз, если длина дороги, по которой они бегают, равна 300 метрам (считайте, что в первый раз он её догнал уже после кражи сумочки)?

Решение скрыто, так как задача находится в активном домашнем задании марафона.

Подключиться к марафону можно тут: Марафон Школково - ВКонтакте

Решение будет опубликовано 29.04.2019 в 12:00

Задание 5 #822
Уровень задания: Равен ЕГЭ

Два мотоциклиста стартуют одновременно из одной точки круговой трассы в разных направлениях. Скорость первого мотоциклиста в два раза больше, чем скорость второго. Через час после старта они встретились в третий раз (считайте, что в первый раз они встретились уже после старта). Найдите скорость первого мотоциклиста, если длина трассы 40 км. Ответ дайте в км/ч.

Решение скрыто, так как задача находится в активном домашнем задании марафона.

Подключиться к марафону можно тут: Марафон Школково - ВКонтакте

Решение будет опубликовано 29.04.2019 в 12:00

Задание 6 #824
Уровень задания: Равен ЕГЭ

Два бегуна стартуют одновременно в одном направлении из двух диаметрально противоположных точек круговой дорожки, длина которой 400 метров. Через сколько минут бегуны поравняются в первый раз, если первый бегун за час пробегает на 1 километр больше, чем второй?

Решение скрыто, так как задача находится в активном домашнем задании марафона.

Подключиться к марафону можно тут: Марафон Школково - ВКонтакте

Решение будет опубликовано 29.04.2019 в 12:00

Задание 7 #825
Уровень задания: Равен ЕГЭ

Из города M по круговой дороге длиной 220 километров вышел турист, а через 55 минут следом за ним из города M отправился автомобилист. Через 5 минут после отправления он догнал туриста в первый раз, а еще через 4 часа после этого догнал его во второй раз. Найдите скорость туриста. Ответ дайте в км/ч.

Решение скрыто, так как задача находится в активном домашнем задании марафона.

Подключиться к марафону можно тут: Марафон Школково - ВКонтакте

Решение будет опубликовано 29.04.2019 в 12:00

Как научиться быстро и правильно решать задачи на круговое движение в ЕГЭ по математике? Этот вопрос в преддверии аттестационного испытания возникает у школьников все чаще. О том, как максимально эффективно подготовиться к экзамену, расскажет образовательный портал «Школково».

Основные моменты

В задачах ЕГЭ на круговое движение перемещение могут осуществлять 2 объекта. В этом случае следует учитывать их скорость сближения или удаления.

\[T=\dfrac S {V_1-V_2}\] \[T=\dfrac S {V_1+V_2}\]

При использовании в упражнении величин, которые связаны с расстоянием (скорость, длина круга), решить их можно путем сведения к перемещению по прямой.

\[S=V\cdot t\]

Наибольшую сложность у школьников Москвы и других городов, как показывает практика, вызывают задачи на круговое движение в ЕГЭ, поиск ответа в которых связан с применением угла. Для решения упражнения длину окружности можно задать как часть круга.

Повторить эти и другие алгебраические формулы вы можете в разделе «Теоретическая справка». Для того чтобы научиться применять их на практике, прорешайте упражнения по данной теме в «Каталоге».