Математика ЕГЭ
Русский язык ЕГЭ
Математика 5-7
Математика ОГЭ
Информатика
Физика
Обществознание
Кликните, чтобы открыть меню

Окружность: вписанная в многоугольник или угол

1. Читай полную теорию
2. Вникай в доказательства
3. Применяй на практике

Определения

Окружность \(S\) вписана в угол \(\alpha\), если \(S\) касается сторон угла \(\alpha\).

 

Окружность \(S\) вписана в многоугольник \(P\), если \(S\) касается всех сторон \(P\).

В этом случае многоугольник \(P\) называется описанным около окружности.

 

Теорема

Центр вписанной в угол окружности лежит на его биссектрисе.

 

Доказательство


 

Пусть \(O\) – центр некоторой окружности, вписанной в угол \(BAC\). Пусть \(B'\) – точка касания окружности и \(AB\), а \(C'\) – точка касания окружности и \(AC\), тогда \(OB'\) и \(OC'\) – радиусы, проведённые в точки касания, следовательно, \(OC'\perp AC\), \(OB'\perp AB\), \(OC' = OB'\).

 

Значит, треугольники \(AC'O\) и \(AB'O\) – прямоугольные треугольники, у которых равны катеты и общая гипотенуза, следовательно, они равны, откуда \(\angle CAO = \angle BAO\), что и требовалось доказать.

 

Теорема

В любой треугольник можно вписать единственную окружность, причём центр этой вписанной окружности есть точка пересечения биссектрис треугольника.

 

Доказательство

Проведем биссектрисы углов \(\angle A\) и \(\angle B\). Пусть они пересеклись в точке \(O\).


 

Т.к. \(O\) лежит на биссектрисе \(\angle A\), то расстояния от точки \(O\) до сторон угла равны: \(ON=OP\).

 

Т.к. \(O\) также лежит на биссектрисе \(\angle B\), то \(ON=OK\). Таким образом, \(OP=OK\), следовательно, точка \(O\) равноудалена от сторон угла \(\angle C\), следовательно, лежит на его биссектрисе, т.е. \(CO\) – биссектриса \(\angle C\).

 

Таким образом, точки \(N, K, P\) равноудалены от точки \(O\), то есть лежат на одной окружности. По определению это и есть вписанная в треугольник окружность.

 

Данная окружность единственна, т.к. если предположить, что существует другая вписанная в \(\triangle ABC\) окружность, то она будет иметь тот же центр и тот же радиус, то есть будет совпадать с первой окружностью.

 

Таким образом, попутно была доказана следующая теорема:

 

Следствие

Биссектрисы треугольника пересекаются в одной точке.

 

Теорема о площади описанного треугольника

Если \(a,b,c\) – стороны треугольника, а \(r\) – радиус вписанной в него окружности, то площадь треугольника \[S_{\triangle}=p\cdot r\] где \(p=\dfrac{a+b+c}2\) – полупериметр треугольника.

 

Доказательство


 

\(S_{\triangle ABC}=S_{\triangle AOC}+S_{\triangle AOB}+S_{\triangle BOC}=\frac12OP\cdot AC+\frac12 ON\cdot AB+\frac12 OK\cdot BC\).

 

Но \(ON=OK=OP=r\) – радиусы вписанной окружности, следовательно,

\[S_{\triangle ABC}=\frac12 r (AC+AB+BC)=p\cdot r\]

Следствие

Если в многоугольник вписана окружность и \(r\) – ее радиус, то площадь многоугольника равна произведению полупериметра многоугольника на \(r\): \[S_{\text{опис.мног-к}}=p\cdot r\]

Теорема

В выпуклый четырёхугольник можно вписать окружность тогда и только тогда, когда суммы его противоположных сторон равны.

 

Доказательство

Необходимость. Докажем, что если в \(ABCD\) вписана окружность, то \(AB+CD=BC+AD\).


 

Пусть \(M,N,K,P\) – точки касания окружности и сторон четырехугольника. Тогда \(AM, AP\) – отрезки касательных к окружности, проведенные из одной точки, следовательно, \(AM=AP=a\). Аналогично, \(BM=BN=b, \ CN=CK=c, \ DK=DP=d\).

 

Тогда: \(AB+CD=a+b+c+d=BC+AD\).

 

Достаточность. Докажем, что если суммы противоположных сторон четырехугольника равны, то в него можно вписать окружность.

 

Проведем биссектрисы углов \(\angle A\) и \(\angle B\), пусть они пересекутся в точке \(O\). Тогда точка \(O\) равноудалена от сторон этих углов, то есть от \(AB, BC, AD\). Впишем окружность в \(\angle A\) и \(\angle B\) с центром в точке \(O\). Докажем, что эта окружность будет касаться и стороны \(CD\).


 

Предположим, что это не так. Тогда \(CD\) либо является секущей, либо не имеет общих точек с окружностью. Рассмотрим второй случай (первый будет доказываться аналогично).

 

Проведем касательную прямую \(C'D' \parallel CD\) (как показано на рисунке). Тогда \(ABC'D'\) – описанный четырехугольник, следовательно, \(AB+C'D'=BC'+AD'\).

 

Т.к. \(BC'=BC-CC', \ AD'=AD-DD'\), то:

\[AB+C'D'=BC-CC'+AD-DD' \Rightarrow C'D'+CC'+DD'=BC+AD-AB=CD\]

Получили, что в четырехугольнике \(C'CDD'\) сумма трех сторон равна четвертой, что невозможно*. Следовательно, предположение ошибочно, значит, \(CD\) касается окружности.

 

Замечание*. Докажем, что в выпуклом четырехугольнике не может сторона равняться сумме трех других.


 

Т.к. в любом треугольнике сумма двух сторон всегда больше третьей, то \(a+x>d\) и \(b+c>x\). Складывая данные неравенства, получим: \(a+x+b+c>d+x \Rightarrow a+b+c>d\). Следовательно, сумма любых трех сторон всегда больше четвертой стороны.

 

Теоремы

1. Если в параллелограмм вписана окружность, то он – ромб (рис. 1).

 

2. Если в прямоугольник вписана окружность, то он – квадрат (рис. 2).


 

Верны и обратные утверждения: в любой ромб и квадрат можно вписать окружность, и притом только одну.

 

Доказательство

1) Рассмотрим параллелограмм \(ABCD\), в который вписана окружность. Тогда \(AB+CD=BC+AD\). Но в параллелограмме противоположные стороны равны, т.е. \(AB=CD, \ BC=AD\). Следовательно, \(2AB=2BC\), а значит, \(AB=BC=CD=AD\), т.е. это ромб.

 

Обратное утверждение очевидно, причем центр этой окружности лежит на пересечении диагоналей ромба.

 

2) Рассмотрим прямоугольник \(QWER\). Т.к. прямоугольник является параллелограммом, то согласно первому пункту \(QW=WE=ER=RQ\), т.е. это ромб. Но т.к. все углы у него прямые, то это квадрат.

 

Обратное утверждение очевидно, причем центр этой окружности лежит на пересечении диагоналей квадрата.