Математика
Русский язык

Ромб

1. Читай полную теорию
2. Вникай в доказательства
3. Применяй на практике

Определение

Ромб – это параллелограмм, у которого все стороны равны.

 

Таким образом, ромб обладает всеми свойствами параллелограмма:

 

\(\sim\) противоположные углы ромба попарно равны;

\(\sim\) соседние углы ромба в сумме дают \(180^\circ\);

\(\sim\) диагонали точкой пересечения делятся пополам.

 

Теорема: свойство ромба

Диагонали ромба перпендикулярны и делят его углы пополам.

 

Доказательство

Рассмотрим ромб \(ABCD\).


 

По определению ромба \(AB = AD\), поэтому треугольник \(BAD\) равнобедренный. Так как ромб – параллелограмм, то его диагонали точкой \(O\) пересечения делятся пополам. Следовательно, \(AO\) – медиана равнобедренного треугольника \(BAD\), а значит, высота и биссектриса этого треугольника. Поэтому \(AC\perp BD\) и \(\angle BAC = \angle DAC\).

 

Теорема: признаки ромба

1. Если в параллелограмме диагонали перпендикулярны, то это – ромб.

 

2. Если в параллелограмме диагонали делят его углы пополам, то это – ромб.

 

3. Если в выпуклом четырехугольнике все стороны равны, то он – ромб.

 

Доказательство

1) Рассмотрим параллелограмм \(ABCD\). Пусть \(AC\perp BD\).

 

Т.к. в параллелограмме диагонали точкой пересечения делятся пополам, то в треугольнике \(ABD\) отрезок \(AO\) – медиана. Т.к. к тому же \(AO\) – высота (следует из условия), то \(\triangle ABD\) – равнобедренный, т.е. \(AB=AD\). Т.к. у параллелограмма противоположные стороны равны, то отсюда следует, что все его стороны будут равны.

 

2) Пусть \(AC\) – биссектриса угла \(\angle A\).

 

Т.к. в параллелограмме диагонали точкой пересечения делятся пополам, то в треугольнике \(ABD\) отрезок \(AO\) – медиана. Т.к. к тому же \(AO\) – биссектриса (следует из условия), то \(\triangle ABD\) – равнобедренный, т.е. \(AB=AD\). Т.к. у параллелограмма противоположные стороны равны, то отсюда следует, что все его стороны будут равны.

 

3) Пусть \(ABCD\) – произвольный четырехугольник и \(AB=BC=CD=AD\).

 

Т.к. противоположные стороны четырехугольника попарно равны, то он – параллелограмм. Т.к. у него все стороны равны, то по определению это ромб.