Математика ЕГЭ
Русский язык ЕГЭ
Математика 5-7
Математика ОГЭ
Информатика
Физика
Обществознание
Кликните, чтобы открыть меню

Треугольник. Важные факты о высоте, биссектрисе и медиане

1. Читай полную теорию
2. Вникай в доказательства
3. Применяй на практике

Определения

Медиана треугольника – это отрезок, соединяющий вершину треугольника с серединой противоположной стороны.

 

Биссектриса треугольника – это отрезок биссектрисы угла треугольника, соединяющий вершину треугольника с точкой противоположной стороны.

 

Высота треугольника – это перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону.

 

Теорема

В любом треугольнике высоты (или их продолжения) пересекаются в одной точке (рис. 1 и 2), биссектрисы пересекаются в одной точке (рис. 3), медианы пересекаются в одной точке (рис. 4).

Теорема

В равнобедренном треугольнике биссектриса, проведённая к основанию, является медианой и высотой.

Верны и другие утверждения:
В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой и медианой.
В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.

 

\[{\Large{\text{Медиана}}}\]

Теорема

В любом треугольнике медианы точкой пересечения делятся в отношении \(2:1\), считая от вершины.

Доказательство

Пусть \(AD\) и \(BE\) – медианы в треугольнике \(ABC\), \(O\) – точка пересечения \(AD\) и \(BE\).


 

\(DE\) – средняя линия в треугольнике \(ABC\), тогда \(DE\parallel AB\), значит \(\angle ADE = \angle BAD\), \(\angle BED = \angle ABE\), следовательно, треугольники \(ABO\) и \(DOE\) подобны (по двум углам).

 

Из подобия треугольников \(ABO\) и \(DOE\): \(\dfrac{BO}{OE} = \dfrac{AB}{DE} = \dfrac{2}{1}\).

 

Для других медиан треугольника \(ABC\) требуемое свойство доказывается аналогично.

 

Теорема

Медиана треугольника делит его на два равновеликих треугольника (равновеликие треугольники – это треугольники, у которых площади равны).

 

Доказательство

Площадь треугольника равна половине произведения основания на высоту, проведенную к этому основанию: \(S_{ABC} = 0,5\cdot AC\cdot h\).


 

Пусть \(BD\) – медиана в треугольнике \(ABC\), тогда \(AD = DC\).

 

\(S_{ABD} = 0,5\cdot AD\cdot h\),

\(S_{BCD} = 0,5\cdot DC\cdot h\).

 

Так как \(AD = DC\), то \(S_{ABD} = S_{BCD}\), что и требовалось доказать.

 

Теорема

В прямоугольном треугольнике медиана, проведенная к гипотенузе, равна половине гипотенузы.

 

Верно и обратное: если медиана равна половине стороны, к которой она проведена, то она проведена из вершины прямого угла.

 

Доказательство

1) Докажем, что если \(\triangle ABC\) – прямоугольный, то \(BM=\frac12AC\), где \(M\) – середина гипотенузы \(AC\).


 

Достроим треугольник \(ABC\) до прямоугольника \(ABCD\) и проведем диагональ \(BD\). Т.к. в прямоугольнике диагонали делятся точкой пересечения пополам и равны, то \(AC\cap BD=M\), причем \(AM=MC=BM=MD\), чтд.

 

2) Докажем, что если в треугольнике \(ABC\) медиана \(BM=AM=MC\), то \(\angle B=90^\circ\).


 

Треугольники \(AMB\) и \(CMB\) – равнобедренные, следовательно, \(\angle BAM=\angle ABM=\alpha, \quad \angle MBC=\angle MCB=\beta\).

 

Т.к. сумма углов в треугольнике равна \(180^\circ\), то для \(\triangle ABC\):

 

\(\alpha+(\alpha+\beta)+\beta=180^\circ \Rightarrow \alpha+\beta=90^\circ \Rightarrow \angle B=90^\circ\), чтд.

 

\[{\Large{\text{Биссектриса}}}\]

Теорема

Биссектриса треугольника делит его сторону на части, пропорциональные прилежащим сторонам:


 

Верно и обратное: если отрезок, проведенный из вершины треугольника к стороне, делит эту сторону на отрезки, пропорциональные прилежащим сторонам, то это биссектриса.

 

Доказательство

Площади треугольников, у которых есть равные углы, относятся как произведения сторон, образующих эти углы, то есть \[\dfrac{S_{ACD}}{S_{BCD}} = \dfrac{AC\cdot CD}{CB\cdot CD} = \dfrac{AC}{CB}\]

С другой стороны, \(\dfrac{S_{ACD}}{S_{BCD}} = \dfrac{0,5\cdot AD\cdot h}{0,5\cdot DB\cdot h}\), где \(h\) – высота, проведённая из точки \(C\), тогда \(\dfrac{S_{ACD}}{S_{BCD}} = \dfrac{AD}{DB}\).

 

В итоге \(\dfrac{AD}{DB} = \dfrac{S_{ACD}}{S_{BCD}} = \dfrac{AC}{CB}\), откуда \(\dfrac{AD}{AC} = \dfrac{DB}{BC}\), что и требовалось доказать.

 

Теорема

Если точка равноудалена от сторон угла, то она лежит на его биссектрисе.

 

Верно и обратное: если точка лежит на биссектрисе угла, то она равноудалена от его сторон.


 

Доказательство

1) Докажем, что если \(KA=KB\), то \(OK\) – биссектриса.
Рассмотрим треугольники \(AOK\) и \(BOK\): они равны по катету и гипотенузе, следовательно, \(\angle AOK=\angle BOK\), чтд.

 

2) Докажем, что если \(OK\) – биссектриса, то \(KA=KB\).
Аналогично треугольники \(AOK\) и \(BOK\) равны по гипотенузе и острому углу, следовательно, \(KA=KB\), чтд.