Математика ЕГЭ
Русский язык ЕГЭ
Математика 5-7
Математика ОГЭ
Информатика
Физика
Обществознание
Кликните, чтобы открыть меню

Трапеция

1. Читай полную теорию
2. Вникай в доказательства
3. Применяй на практике

\[{\Large{\text{Произвольная трапеция}}}\]

Определения

Трапеция – это выпуклый четырехугольник, у которого две стороны параллельны, а две другие стороны не параллельны.

Параллельные стороны трапеции называются её основаниями, а две другие стороны – боковыми сторонами.

 

Высота трапеции – это перпендикуляр, опущенный из любой точки одного основания к другому основанию.

 

Теоремы: свойства трапеции

 

1) Сумма углов при боковой стороне равна \(180^\circ\).

 

2) Диагонали делят трапецию на четыре треугольника, два из которых подобны, а два другие – равновелики.


 

Доказательство

1) Т.к. \(AD\parallel BC\), то углы \(\angle BAD\) и \(\angle ABC\) – односторонние при этих прямых и секущей \(AB\), следовательно, \(\angle BAD +\angle ABC=180^\circ\).

 

2) Т.к. \(AD\parallel BC\) и \(BD\) – секущая, то \(\angle DBC=\angle BDA\) как накрест лежащие.
Также \(\angle BOC=\angle AOD\) как вертикальные.
Следовательно, по двум углам \(\triangle BOC \sim \triangle AOD\).

Докажем, что \(S_{\triangle AOB}=S_{\triangle COD}\). Пусть \(h\) – высота трапеции. Тогда \(S_{\triangle ABD}=\frac12\cdot h\cdot AD=S_{\triangle ACD}\). Тогда: \[S_{\triangle AOB}=S_{\triangle ABD}-S_{\triangle AOD}=S_{\triangle ACD}-S_{\triangle AOD}=S_{\triangle COD}\]

 

Определение

Средняя линия трапеции – отрезок, соединяющий середины боковых сторон.

 

Теорема

Средняя линия трапеции параллельна основаниям и равна их полусумме.


 

Доказательство*
С доказательством рекомендуется ознакомиться после изучения темы “Подобие треугольников”.

 

1) Докажем параллельность.


 

Проведем через точку \(M\) прямую \(MN'\parallel AD\) (\(N'\in CD\)). Тогда по теореме Фалеса (т.к. \(MN'\parallel AD\parallel BC, AM=MB\)) точка \(N'\) — середина отрезка \(CD\). Значит, точки \(N\) и \(N'\) совпадут.

 

2) Докажем формулу.

 

Проведем \(BB'\perp AD, CC'\perp AD\). Пусть \(BB'\cap MN=M', CC'\cap MN=N'\).


 

Тогда по теореме Фалеса \(M'\) и \(N'\) — середины отрезков \(BB'\) и \(CC'\) соответственно. Значит, \(MM'\) – средняя линия \(\triangle ABB'\), \(NN'\) — средняя линия \(\triangle DCC'\). Поэтому: \[MM'=\dfrac12 AB', \quad NN'=\dfrac12 DC'\]

Т.к. \(MN\parallel AD\parallel BC\) и \(BB', CC'\perp AD\), то \(B'M'N'C'\) и \(BM'N'C\) – прямоугольники. По теореме Фалеса из \(MN\parallel AD\) и \(AM=MB\) следует, что \(B'M'=M'B\). Значит, \(B'M'N'C'\) и \(BM'N'C\) – равные прямоугольники, следовательно, \(M'N'=B'C'=BC\).

 

Таким образом:

\[MN=MM'+M'N'+N'N=\dfrac12 AB'+B'C'+\dfrac12 C'D=\] \[=\dfrac12 \left(AB'+B'C'+BC+C'D\right)=\dfrac12\left(AD+BC\right)\]

Теорема: свойство произвольной трапеции

Середины оснований, точка пересечения диагоналей трапеции и точка пересечения продолжений боковых сторон лежат на одной прямой.


 

Доказательство*
С доказательством рекомендуется ознакомиться после изучения темы “Подобие треугольников”.

 

1) Докажем, что точки \(P\), \(N\) и \(M\) лежат на одной прямой.


 

Проведем прямую \(PN\) (\(P\) – точка пересечения продолжений боковых сторон, \(N\) – середина \(BC\)). Пусть она пересечет сторону \(AD\) в точке \(M\). Докажем, что \(M\) – середина \(AD\).

 

Рассмотрим \(\triangle BPN\) и \(\triangle APM\). Они подобны по двум углам (\(\angle APM\) – общий, \(\angle PAM=\angle PBN\) как соответственные при \(AD\parallel BC\) и \(AB\) секущей). Значит: \[\dfrac{BN}{AM}=\dfrac{PN}{PM}\]

Рассмотрим \(\triangle CPN\) и \(\triangle DPM\). Они подобны по двум углам (\(\angle DPM\) – общий, \(\angle PDM=\angle PCN\) как соответственные при \(AD\parallel BC\) и \(CD\) секущей). Значит: \[\dfrac{CN}{DM}=\dfrac{PN}{PM}\]

Отсюда \(\dfrac{BN}{AM}=\dfrac{CN}{DM}\). Но \(BN=NC\), следовательно, \(AM=DM\).

 

2) Докажем, что точки \(N, O, M\) лежат на одной прямой.


 

Пусть \(N\) – середина \(BC\), \(O\) – точка пересечения диагоналей. Проведем прямую \(NO\), она пересечет сторону \(AD\) в точке \(M\). Докажем, что \(M\) – середина \(AD\).

 

\(\triangle BNO\sim \triangle DMO\) по двум углам (\(\angle OBN=\angle ODM\) как накрест лежащие при \(BC\parallel AD\) и \(BD\) секущей; \(\angle BON=\angle DOM\) как вертикальные). Значит: \[\dfrac{BN}{MD}=\dfrac{ON}{OM}\]

Аналогично \(\triangle CON\sim \triangle AOM\). Значит: \[\dfrac{CN}{MA}=\dfrac{ON}{OM}\]

Отсюда \(\dfrac{BN}{MD}=\dfrac{CN}{MA}\). Но \(BN=CN\), следовательно, \(AM=MD\).

\[{\Large{\text{Равнобедренная трапеция}}}\]

Определения

Трапеция называется прямоугольной, если один из ее углов – прямой.

 

Трапеция называется равнобедренной, если ее боковые стороны равны.

 

Теоремы: свойства равнобедренной трапеции

1) У равнобедренной трапеции углы при основании равны.

 

2) Диагонали равнобедренной трапеции равны.

 

3) Два треугольника, образованные диагоналями и основанием, являются равнобедренными.

 

Доказательство

1) Рассмотрим равнобедренную трапецию \(ABCD\).



Из вершин \(B\) и \(C\) опустим на сторону \(AD\) перпендикуляры \(BM\) и \(CN\) соответственно. Так как \(BM\perp AD\) и \(CN\perp AD\), то \(BM\parallel CN\); \(AD\parallel BC\), тогда \(MBCN\) – параллелограмм, следовательно, \(BM = CN\).

 

Рассмотрим прямоугольные треугольники \(ABM\) и \(CDN\). Так как у них равны гипотенузы и катет \(BM\) равен катету \(CN\), то эти треугольники равны, следовательно, \(\angle DAB = \angle CDA\).

 

2)

 

Т.к. \(AB=CD, \angle A=\angle D, AD\) – общая, то по первому признаку \(\triangle ABD=\triangle ACD\). Следовательно, \(AC=BD\).

 

3) Т.к. \(\triangle ABD=\triangle ACD\), то \(\angle BDA=\angle CAD\). Следовательно, треугольник \(\triangle AOD\) – равнобедренный. Аналогично доказывается, что и \(\triangle BOC\) – равнобедренный.

 

Теоремы: признаки равнобедренной трапеции

1) Если у трапеции углы при основании равны, то она равнобедренная.

 

2) Если у трапеции диагонали равны, то она равнобедренная.

 

Доказательство

Рассмотрим трапецию \(ABCD\), такую что \(\angle A = \angle D\).


 

Достроим трапецию до треугольника \(AED\) как показано на рисунке. Так как \(\angle 1 = \angle 2\), то треугольник \(AED\) равнобедренный и \(AE = ED\). Углы \(1\) и \(3\) равны как соответственные при параллельных прямых \(AD\) и \(BC\) и секущей \(AB\). Аналогично равны углы \(2\) и \(4\), но \(\angle 1 = \angle 2\), тогда \(\angle 3 = \angle 1 = \angle 2 = \angle 4\), следовательно, треугольник \(BEC\) тоже равнобедренный и \(BE = EC\).

 

В итоге \(AB = AE - BE = DE - CE = CD\), то есть \(AB = CD\), что и требовалось доказать.

 

2) Пусть \(AC=BD\). Т.к. \(\triangle AOD\sim \triangle BOC\), то обозначим их коэффициент подобия за \(k\). Тогда если \(BO=x\), то \(OD=kx\). Аналогично \(CO=y \Rightarrow AO=ky\).


 

Т.к. \(AC=BD\), то \(x+kx=y+ky \Rightarrow x=y\). Значит \(\triangle AOD\) – равнобедренный и \(\angle OAD=\angle ODA\).

 

Таким образом, по первому признаку \(\triangle ABD=\triangle ACD\) (\(AC=BD, \angle OAD=\angle ODA, AD\) – общая). Значит, \(AB=CD\), чтд.