Математика ЕГЭ
Русский язык ЕГЭ
Математика 5-7
Математика ОГЭ
Кликните, чтобы открыть меню

6. Геометрия на плоскости (планиметрия). Часть II

1. Вспоминай формулы по каждой теме
2. Решай новые задачи каждый день
3. Вдумчиво разбирай решения

Вычисление синуса, косинуса и тангенса угла треугольника (страница 5)

В прямоугольном треугольнике:

 

\(\blacktriangleright\) Синус острого угла равен отношению противолежащего катета к гипотенузе: \[{\large{\sin \alpha = \dfrac{a}{c}}}\]

\(\blacktriangleright\) Косинус острого угла равен отношению прилежащего катета к гипотенузе: \[{\large{\cos \alpha = \dfrac{b}{c}}}\]

\(\blacktriangleright\) Тангенс острого угла равен отношению противолежащего катета к прилежащему: \[{\large{\mathrm{tg}\, \alpha = \dfrac{a}{b}}}\]

\(\blacktriangleright\) Котангенс острого угла равен отношению прилежащего катета к противолежащему: \[{\large{\mathrm{ctg}\, \alpha =\dfrac{b}{a}}}\]


 

Важные формулы:
\[{\large{\begin{array}{|lcl|} \hline \sin^2 \alpha+\cos^2 \alpha =1&\qquad& \mathrm{tg}\, \alpha \cdot \mathrm{ctg}\, \alpha =1\\ &&\\ \mathrm{tg}\, \alpha=\dfrac{\sin \alpha}{\cos \alpha}&&\mathrm{ctg}\, \alpha =\dfrac{\cos \alpha}{\sin \alpha}\\&&\\ \hline \end{array}}}\]

\[\begin{array}{|c|c|c|c|c|c|} \hline & \phantom{000}\, 0^\circ \phantom{000}& \phantom{000}\, 30^\circ \phantom{000} & \phantom{000}\, 45^\circ \phantom{000} & \phantom{000}\, 60^\circ \phantom{000} & \phantom{000}\, 90^\circ \phantom{000}\\[1ex] \hline \sin & 0 &\frac12&\frac{\sqrt2}2&\frac{\sqrt3}2 & 1\\[1ex] \hline \cos & 1 & \frac{\sqrt3}2&\frac{\sqrt2}2&\frac12 & 0\\[1ex] \hline \mathrm{tg} & 0 & \frac{\sqrt3}3&1&\sqrt3 & \text{не сущ.}\\[1ex] \hline \mathrm{ctg}& \text{не сущ.} &\sqrt3&1&\frac{\sqrt3}3 & 0\\[1ex] \hline \end{array}\]

Задание 29 #2956
Уровень задания: Равен ЕГЭ

В треугольнике \(ABC\): высота \(CH\) равна \(2\sqrt6\), косинус угла \(A\) равен \(0,2\). Найдите \(AC\).

Решение скрыто, так как задача находится в активном домашнем задании марафона.

Подключиться к марафону можно тут: Марафон Школково - ВКонтакте

Решение будет опубликовано 28.03.2019 в 09:00

Задание 30 #2106
Уровень задания: Сложнее ЕГЭ

В прямоугольном треугольнике \(CAT\) из вершины \(C\) прямого угла опущена высота \(CH\). Известно, что \(TH=12, CH=5\). Найдите \(13\sin \angle A\).

Решение скрыто, так как задача находится в активном домашнем задании марафона.

Подключиться к марафону можно тут: Марафон Школково - ВКонтакте

Решение будет опубликовано 28.03.2019 в 09:00

Задание 31 #616
Уровень задания: Сложнее ЕГЭ

В четырёхугольнике \(ABCD\): \(AD = 5\), \(AD\parallel BC\), \(BD\) перпендикулярна к \(AD\), \(\sin{\angle A} = \cos{\angle A}\), \(\sin{\angle C} = \dfrac{5}{\sqrt{34}}\). Найдите \(BC\).

Решение скрыто, так как задача находится в активном домашнем задании марафона.

Подключиться к марафону можно тут: Марафон Школково - ВКонтакте

Решение будет опубликовано 28.03.2019 в 09:00

Задание 32 #2105
Уровень задания: Сложнее ЕГЭ

Дан прямоугольный \(\triangle CAT\) с острыми углами \(A\) и \(T\). Точка \(H\) – такая точка на стороне \(AT\), что \(\cos \angle ACH=\cos \angle ATC=0,2\). Найдите \(HT\), если известно, что \(AT=2,5\).

Решение скрыто, так как задача находится в активном домашнем задании марафона.

Подключиться к марафону можно тут: Марафон Школково - ВКонтакте

Решение будет опубликовано 28.03.2019 в 09:00

Задание 33 #615
Уровень задания: Сложнее ЕГЭ

В треугольнике \(ABC\): \(\angle A = 90^{\circ}\), \(\mathrm{ctg}\, \angle B = 0,6\). Площадь треугольника \(ABC\) равна \(7,5\). Найдите \(AB + AC\).

Решение скрыто, так как задача находится в активном домашнем задании марафона.

Подключиться к марафону можно тут: Марафон Школково - ВКонтакте

Решение будет опубликовано 28.03.2019 в 09:00

Задание 34 #614
Уровень задания: Сложнее ЕГЭ

В прямоугольнике \(ABCD\) известно, что \(BC:AB = 2:1\), \(AC\) – диагональ. Найдите отношение косинуса угла \(CAD\) к косинусу угла \(ACD\).

Решение скрыто, так как задача находится в активном домашнем задании марафона.

Подключиться к марафону можно тут: Марафон Школково - ВКонтакте

Решение будет опубликовано 28.03.2019 в 09:00