Математика ЕГЭ
Русский язык ЕГЭ
Математика 5-7
Математика ОГЭ
Информатика
Физика
Обществознание
Кликните, чтобы открыть меню

6. Геометрия на плоскости (планиметрия). Часть II

1. Вспоминай формулы по каждой теме
2. Решай новые задачи каждый день
3. Вдумчиво разбирай решения

Задачи на клетчатой бумаге (страница 5)

\(\blacktriangleright\) Помним, что каждая клетка представляет собой квадрат.

 

\(\blacktriangleright\) В равных прямоугольниках равны диагонали.

 

\(\blacktriangleright\) Теорема Пифагора: в прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.


 

\(\blacktriangleright\) В прямоугольном треугольнике катет, лежащий против угла \(30^\circ\), равен половине гипотенузы.
И наоборот: катет, равный половине гипотенузы, лежит против угла \(30^\circ\) (рис. 1).

 

\(\blacktriangleright\) Медиана, проведенная к основанию в равнобедренном треугольнике, является высотой и биссектрисой (рис. 2).

Задание 29 #3710
Уровень задания: Равен ЕГЭ

Площадь круга, изображенного на клетчатой бумаге, равна \(16\). Найдите площадь закрашенного кругового сектора.

Отметим точки и проведем отрезки, как показано на рисунке:



Заметим, что точки \(O, K, L\) находятся в узлах решетки и образуют прямоугольный \(\triangle OKL\), который к тому же является равнобедренным. Следовательно, \(\angle KOL=45^\circ\).
\(\angle AOB=90^\circ\). Следовательно, \(\angle AOC=135^\circ\).
Таким образом, закрашенный сектор составляет \(135:360=3:8\) части от всего круга, значит, его площадь равна \[\dfrac 38\cdot 16=6\]

Ответ: 6

Задание 30 #3709
Уровень задания: Равен ЕГЭ

Найдите площадь квадрата, изображенного на клетчатой бумаге с размером клетки \(1\) см \(\times\) \(1\) см. Ответ дайте в квадратных сантиметрах.

Рассмотрим прямоугольный \(\triangle ANL\):



Все точки \(A, N, L\) лежат в узлах решетки, \(NL\) – гипотенуза этого треугольника и сторона квадрата. Так как площадь квадрата равна квадрату его стороны, то \[S=NL^2=AN^2+AL^2=2^2+7^2=53\]

Ответ: 53

Задание 31 #3708
Уровень задания: Равен ЕГЭ

На клетчатой бумаге с размером клетки \(1\times 1\) изображен угол. Найдите косинус этого угла.

Продлим одну из сторон тупого угла \(A\) на отрезок \(AC\) так, чтобы \(BC\perp AC\):



Заметим, что все вершины треугольника \(ABC\) находятся в узлах решетки, причем \(AC=4, BC=3\). Тогда \(AB=\sqrt{3^2+4^2}=5\). Так как косинус острого угла (в прямоугольном треугольнике) – это отношение прилежащего катета к гипотенузе, то \[\cos \angle BAC=\dfrac{AC}{AB}=\dfrac45=0,8\] Угол \(BAC\) с тупым углом \(A\) – смежные, следовательно, их косинусы противоположны, значит, косинус тупого угла \(A\) равен \(-0,8\).

Ответ: -0,8

Задание 32 #3706
Уровень задания: Равен ЕГЭ

На клетчатой бумаге с размером клетки \(1\times 1\) изображен угол. Найдите синус этого угла.

Отметим точки \(A, B, C\), проведем отрезок \(BC\):



Заметим, что все вершины треугольника \(ABC\) находятся в узлах решетки, причем \(AC=4, BC=3\). Тогда \(AB=\sqrt{3^2+4^2}=5\). Так как синус острого угла (в прямоугольном треугольнике) – это отношение противолежащего катета к гипотенузе, то \[\sin \angle A=\dfrac{BC}{AB}=\dfrac35=0,6\]

Ответ: 0,6

Задание 33 #3705
Уровень задания: Равен ЕГЭ

Найдите градусную меру дуги \(AC\) окружности, на которую опирается угол \(ABC\). Ответ дайте в градусах.

Пусть \(O\) – центр окружности.



Пусть сторона клетки равна \(1\). Точки \(O\) и \(A\) находятся в узлах решетки, причем \(AO\) – гипотенуза равнобедренного прямоугольного треугольника \(AOK\) (с катетами \(2\)). Следовательно, \(\angle AOK=\angle OAK=45^\circ\).
\(\angle AOC=\angle AOK=45^\circ\) – центральный угол, опирающийся на хорду \(AC\). Тогда градусная мера дуги \(AC\) также равна \(45^\circ\).

Ответ: 45

Задание 34 #3704
Уровень задания: Равен ЕГЭ

Найдите угол \(ABC\). Ответ дайте в градусах.

Пусть \(O\) – центр окружности.



Пусть сторона клетки равна \(1\). Точки \(O\), \(C\) и \(A\) находятся в узлах решетки, причем \(AO\) – гипотенуза равнобедренного прямоугольного треугольника с катетами \(2\), следовательно, \(AO=2\sqrt2\). \(AO=CO\) – радиусы окружности. \(AC=4\).
Заметим, что \(AO^2+CO^2=AC^2\), следовательно, по обратной теореме Пифагора, \(\angle AOC=90^\circ\). Это центральный угол, опирающийся на хорду \(AC\). Тогда вписанный угол \(ABC\), опирающийся на эту же хорду, равен половине \(\angle AOC\), то есть \(45^\circ\).

Ответ: 45

Задание 35 #3703
Уровень задания: Равен ЕГЭ

Найдите радиус окружности, вписанной в треугольник \(ABC\), считая стороны квадратных клеток равными \(1\).

Так как радиус окружности, вписанной в прямоугольный треугольник, ищется по формуле \(r=(a+b-c):2\), где \(a, b\) – катеты, \(c\) – гипотенуза, то \[r=\dfrac{3+4-\sqrt{3^2+4^2}}2=1\]

Ответ: 1