Математика
Русский язык

6. Геометрия на плоскости (планиметрия). Часть II

1. Вспоминай формулы по каждой теме
2. Решай новые задачи каждый день
3. Вдумчиво разбирай решения

Окружность: важные теоремы, связанные с углами (страница 2)

\(\blacktriangleright\) Радиус, проведенный в точку касания, перпендикулярен касательной;


 

\(\blacktriangleright\) Угол между касательной и хордой, проходящей через точку касания, равен половине дуги, заключенной между ними; \[\alpha = \dfrac{1}{2}\buildrel\smile\over{AB}\]


 

\(\blacktriangleright\) Угол между двумя секущими, проведенными из одной точки вне окружности, равен полуразности дуг, заключенных между ними; \[\alpha = \dfrac{1}{2}\left(\buildrel\smile\over{AB}-\buildrel\smile\over{CD}\right)\]


 

\(\blacktriangleright\) Угол между двумя хордами равен полусумме дуг, заключенных между ними; \[\alpha = \dfrac{1}{2}\left(\buildrel\smile\over{AB}+\buildrel\smile\over{CD}\right)\]


 

\(\blacktriangleright\) Прямая, проходящая через точку вне окружности и центр окружности, является биссектрисой угла, образованного касательными, проведенными из этой точки к окружности;


 

\(\blacktriangleright\) Если радиус делит хорду пополам, то он ей перпендикулярен;


 

\(\blacktriangleright\) Вписанный угол, опирающийся на диаметр, равен \(90^\circ\);


 

\(\blacktriangleright\) Дуги (меньшие полуокружности),отсекаемые равными хордами, равны между собой.

Задание 8
Уровень задания: Равен ЕГЭ

\(AC\) и \(BC\) касаются окружности с центром \(O\). \(\angle OCB = 40^{\circ}\). Найдите \(\angle ACB\). Ответ дайте в градусах.



Добавить задание в избранное

\(OC\) – биссектриса \(\angle ACB\). Покажем это:
Построим радиусы \(OA\) и \(OB\).



Радиус, проведённый в точку касания, перпендикулярен касательной, следовательно
\(O\) – точка внутри угла \(ACB\), равноудалённая от его сторон. Тогда \(O\) лежит на биссектрисе этого угла (это можно показать через равенство треугольников \(AOC\) и \(BOC\)).

В данной задаче \(\angle OCB = 40^{\circ}\), тогда \(\angle ACB = 2\cdot \angle OCB = 2\cdot 40^{\circ} = 80^{\circ}\).

Ответ: 80

Задание 9
Уровень задания: Равен ЕГЭ

Угол между двумя секущими, проведенными к окружности из точки \(O\) вне окружности, равен \(20^\circ\). Найдите большую дугу, заключенную между секущими, если сумма градусных мер обеих дуг, заключенных между секущими, равна \(100^\circ\). Ответ дайте в градусах.

Добавить задание в избранное

Рассмотрим картинку:


 

Т.к. угол, образованный двумя такими секущими, равен полуразности дуг, заключенных между ними, то

\[\angle O=0,5\left(\alpha-\beta\right)=20^\circ\]

С другой стороны, по условию задачи \(\alpha+\beta=100^\circ\).
Решая систему из этих двух уравнений, находим, что \(\alpha=70^\circ\).

Ответ: 70

Задание 10
Уровень задания: Равен ЕГЭ

Прямая \(AB\) касается окружности в точке \(A\). На окружности отмечена точка \(C\) так, что \(CB\perp AB\) и \(CB=AB\). Найдите центральный угол, опирающийся на меньшую дугу \(AC\). Ответ дайте в градусах.

Добавить задание в избранное

Рассмотрим картинку:


 

Треугольник \(ABC\) – равнобедренный и прямоугольный, следовательно, \(\angle BAC=45^\circ\). Т.к. угол между касательной \(AB\) и хордой \(AC\) равен половине дуги \(\buildrel\smile\over{AC}\), заключенной между ними, то \(\buildrel\smile\over{AC}=90^\circ\). Тогда центральный угол \(\angle AOC=\buildrel\smile\over{AC}=90^\circ\).

Ответ: 90

Задание 11
Уровень задания: Равен ЕГЭ

Касательные \(CA\) и \(CB\) к окружности образуют угол \(ACB\), равный \(112^\circ\). Найдите величину меньшей дуги \(AB\), стягиваемой точками касания. Ответ дайте в градусах.

Добавить задание в избранное


 

Пусть \(O\) – центр окружности. Проведем радиусы \(OA\) и \(OB\). Так как радиус, проведенный в точку касания, перпендикулярен касательной, то \(OA\perp AC, OB\perp BC\). Заметим, что \(OACB\) – четырехугольник. Так как сумма углов четырехугольника равна \(360^\circ\), то \[\angle AOB=360^\circ-112^\circ-90^\circ-90^\circ=68^\circ.\] \(\angle AOB\) – центральный угол, опирающийся на дугу \(AB\), следовательно, \(\buildrel\smile\over{AB}=\angle AOB=68^\circ\).

Ответ: 68

Задание 12
Уровень задания: Равен ЕГЭ

Хорды \(AC\) и \(BD\) пересекаются в точке \(O'\). Дуга \(AB\), заключённая внутри угла \(AO'B\), равна \(60^{\circ}\), а дуга \(CD\), заключённая внутри угла \(CO'D\), равна \(16^{\circ}\). Найдите \(\angle AO'B\). Ответ дайте в градусах.

Добавить задание в избранное

Угол между хордами окружности равен полусумме градусных мер дуг, заключённых внутри него и вертикального ему. Покажем это подробнее:
Соединим точки \(A\) и \(D\).


 

\(\angle AO'B\) – внешний в треугольнике \(AO'D\), тогда \(\angle AO'B = \angle CAD + \angle ADB = 0,5\cdot \smile CD + 0,5\cdot \smile AB = 0,5(\smile CD + \smile AB)\).

В данной задаче \(\angle AO'B = 0,5(\smile CD + \smile AB) = 0,5 (16^{\circ} + 60^{\circ}) = 38^{\circ}\).

Ответ: 38

Задание 13
Уровень задания: Равен ЕГЭ

Угол \(ACB\) равен \(42^\circ\). Градусная мера дуги \(AB\) окружности, не содержащей точки \(D\) и \(E\), равна \(124^\circ\). Найдите угол \(DAE\). Ответ дайте в градусах.

Добавить задание в избранное



Так как угол между двумя секущими, проведенными из одной точки вне окружности, равен полуразности дуг, заключенных между ними, то \(\angle ACB=0,5(\buildrel\smile\over{AKB}-\buildrel\smile\over{DNE})=42^\circ\). Так как \(\buildrel\smile\over{AKB}=124^\circ\), то \(\buildrel\smile\over{DNE}=124^\circ-2\cdot 42^\circ=40^\circ\). Тогда \(\angle DAE\), как вписанный и опирающийся на дугу \(\buildrel\smile\over{DNE}\), равен ее половине, то есть \(20^\circ\).

Ответ: 20

Задание 14
Уровень задания: Равен ЕГЭ

Найдите угол \(ACB\), если вписанные углы \(ADB\) и \(DAE\) опираются на дуги окружности, градусные меры которых равны соответственно \(118^\circ\) и \(38^\circ\). Ответ дайте в градусах.

Добавить задание в избранное

Так как угол между двумя секущими, проведенными из одной точки вне окружности, равен полуразности дуг, заключенных между ними, то \(\angle ACB=0,5(118^\circ-38^\circ)=40^\circ\).

Ответ: 40

1 2 3 4