Математика ЕГЭ
Русский язык ЕГЭ
Математика 5-7
Математика ОГЭ
Информатика
Физика
Обществознание
Кликните, чтобы открыть меню

6. Геометрия на плоскости (планиметрия). Часть II

1. Вспоминай формулы по каждой теме
2. Решай новые задачи каждый день
3. Вдумчиво разбирай решения

Окружность: важные теоремы, связанные с углами (страница 3)

\(\blacktriangleright\) Радиус, проведенный в точку касания, перпендикулярен касательной;


 

\(\blacktriangleright\) Угол между касательной и хордой, проходящей через точку касания, равен половине дуги, заключенной между ними; \[\alpha = \dfrac{1}{2}\buildrel\smile\over{AB}\]


 

\(\blacktriangleright\) Угол между двумя секущими, проведенными из одной точки вне окружности, равен полуразности дуг, заключенных между ними; \[\alpha = \dfrac{1}{2}\left(\buildrel\smile\over{AB}-\buildrel\smile\over{CD}\right)\]


 

\(\blacktriangleright\) Угол между двумя хордами равен полусумме дуг, заключенных между ними; \[\alpha = \dfrac{1}{2}\left(\buildrel\smile\over{AB}+\buildrel\smile\over{CD}\right)\]


 

\(\blacktriangleright\) Прямая, проходящая через точку вне окружности и центр окружности, является биссектрисой угла, образованного касательными, проведенными из этой точки к окружности;


 

\(\blacktriangleright\) Если радиус делит хорду пополам, то он ей перпендикулярен;


 

\(\blacktriangleright\) Вписанный угол, опирающийся на диаметр, равен \(90^\circ\);


 

\(\blacktriangleright\) Дуги (меньшие полуокружности),отсекаемые равными хордами, равны между собой.

Задание 15 #3535
Уровень задания: Равен ЕГЭ

Угол \(ACO\) равен \(24^\circ\). Его сторона \(CA\) касается окружности с центром в точке \(O\). Найдите градусную меру дуги \(AD\), заключенной внутри этого угла, где \(B\) и \(D\) – точки пересечения секущей \(CO\) с окружностью. Ответ дайте в градусах.

Решение скрыто, так как задача находится в активном домашнем задании марафона.

Подключиться к марафону можно тут: Марафон Школково - ВКонтакте

Решение будет опубликовано 30.01.2020 в 12:00

Задание 16 #3534
Уровень задания: Равен ЕГЭ

Через концы \(A\) и \(B\) дуги окружности в \(62^\circ\) проведены касательные \(AC\) и \(BC\). Найдите угол \(ACB\). Ответ дайте в градусах.

Решение скрыто, так как задача находится в активном домашнем задании марафона.

Подключиться к марафону можно тут: Марафон Школково - ВКонтакте

Решение будет опубликовано 30.01.2020 в 12:00

Задание 17 #3533
Уровень задания: Равен ЕГЭ

Угол между хордой \(AB\) и касательной \(BC\) к окружности равен \(32^\circ\). Найдите величину меньшей дуги, стягиваемой хордой \(AB\). Ответ дайте в градусах.

Решение скрыто, так как задача находится в активном домашнем задании марафона.

Подключиться к марафону можно тут: Марафон Школково - ВКонтакте

Решение будет опубликовано 30.01.2020 в 12:00

Задание 18 #3532
Уровень задания: Равен ЕГЭ

Хорда \(AB\) стягивает дугу окружности в \(92^\circ\). Найдите угол \(ABC\) между этой хордой и касательной к окружности, проведенной через точку \(B\). Ответ дайте в градусах.

Решение скрыто, так как задача находится в активном домашнем задании марафона.

Подключиться к марафону можно тут: Марафон Школково - ВКонтакте

Решение будет опубликовано 30.01.2020 в 12:00

Задание 19 #2168
Уровень задания: Сложнее ЕГЭ

Из точки \(A\) на окружности проведены две прямые, пересекающие повторно окружность в точках \(B\) и \(C\), причем оказалось, что \(AC\) – диаметр, равный \(10\). Найдите длину отрезка \(AB\), если угол между этими прямыми равен \(60^\circ\).

Решение скрыто, так как задача находится в активном домашнем задании марафона.

Подключиться к марафону можно тут: Марафон Школково - ВКонтакте

Решение будет опубликовано 30.01.2020 в 12:00

Задание 20 #2167
Уровень задания: Сложнее ЕГЭ

Из точки \(A\) вне окружности проведены две секущие к окружности, угол между которыми равен \(11^\circ\). Первая секущая пересекла окружность в точках \(K_1\) и \(L_1\), вторая — в точках \(K_2\) и \(L_2\), причем \(K_1L_1=K_2L_2\) и дуга \(\buildrel\smile\over{K_1L_1}\), меньшая полуокружности, равна \(95^\circ\).

 

Найдите меньшую из дуг, заключенных между данными секущими.

Решение скрыто, так как задача находится в активном домашнем задании марафона.

Подключиться к марафону можно тут: Марафон Школково - ВКонтакте

Решение будет опубликовано 30.01.2020 в 12:00

Задание 21 #2169
Уровень задания: Сложнее ЕГЭ

На рисунке диаметр \(AB\) пересекает хорду \(PT\) и делит ее пополам, а также пересекает хорду \(KT\). Дуга \(PB\), меньшая полуокружности, равна \(75^\circ\); дуга \(AK\), меньшая полуокружности, равна \(15^\circ\).


 

Найдите угол между прямыми \(AB\) и \(KT\). Ответ дайте в градусах.

Решение скрыто, так как задача находится в активном домашнем задании марафона.

Подключиться к марафону можно тут: Марафон Школково - ВКонтакте

Решение будет опубликовано 30.01.2020 в 12:00