Математика ЕГЭ
Русский язык ЕГЭ
Математика 5-7
Математика ОГЭ
Физика
Кликните, чтобы открыть меню

6. Геометрия на плоскости (планиметрия). Часть II

1. Вспоминай формулы по каждой теме
2. Решай новые задачи каждый день
3. Вдумчиво разбирай решения

Окружность: важные теоремы, связанные с углами (страница 3)

\(\blacktriangleright\) Радиус, проведенный в точку касания, перпендикулярен касательной;


 

\(\blacktriangleright\) Угол между касательной и хордой, проходящей через точку касания, равен половине дуги, заключенной между ними; \[\alpha = \dfrac{1}{2}\buildrel\smile\over{AB}\]


 

\(\blacktriangleright\) Угол между двумя секущими, проведенными из одной точки вне окружности, равен полуразности дуг, заключенных между ними; \[\alpha = \dfrac{1}{2}\left(\buildrel\smile\over{AB}-\buildrel\smile\over{CD}\right)\]


 

\(\blacktriangleright\) Угол между двумя хордами равен полусумме дуг, заключенных между ними; \[\alpha = \dfrac{1}{2}\left(\buildrel\smile\over{AB}+\buildrel\smile\over{CD}\right)\]


 

\(\blacktriangleright\) Прямая, проходящая через точку вне окружности и центр окружности, является биссектрисой угла, образованного касательными, проведенными из этой точки к окружности;


 

\(\blacktriangleright\) Если радиус делит хорду пополам, то он ей перпендикулярен;


 

\(\blacktriangleright\) Вписанный угол, опирающийся на диаметр, равен \(90^\circ\);


 

\(\blacktriangleright\) Дуги (меньшие полуокружности),отсекаемые равными хордами, равны между собой.

Задание 15 #3535
Уровень задания: Равен ЕГЭ

Угол \(ACO\) равен \(24^\circ\). Его сторона \(CA\) касается окружности с центром в точке \(O\). Найдите градусную меру дуги \(AD\), заключенной внутри этого угла, где \(B\) и \(D\) – точки пересечения секущей \(CO\) с окружностью. Ответ дайте в градусах.

Добавить задание в избранное

Найдем градусную меру меньшей дуги, стягиваемой хордой \(AB\). Она равна центральному углу \(AOB\), на нее опирающемуся. Так как радиус, проведенный в точку касания, перпендикулярен касательной, то \(\angle OAC=90^\circ\). Следовательно, из \(\triangle OAC\): \(\angle AOC=90^\circ-24^\circ=66^\circ\). Тогда \(\angle AOD=180^\circ-\angle AOC=114^\circ\). Дуга \(AD\), заключенная внутри угла \(ACD\), равна центральному углу \(AOD\) и равна \(114^\circ\).

Ответ: 114

Задание 16 #3534
Уровень задания: Равен ЕГЭ

Через концы \(A\) и \(B\) дуги окружности в \(62^\circ\) проведены касательные \(AC\) и \(BC\). Найдите угол \(ACB\). Ответ дайте в градусах.

Добавить задание в избранное

Так как угол между касательной и хордой, проведенными из одной точки окружности, равен половине дуги, заключенной между ними, то \(\angle ABC=\angle BAC=0,5\cdot 62^\circ=31^\circ\). Следовательно, из \(\triangle ABC\): \(\angle ACB=180^\circ-2\cdot 31^\circ=118^\circ\).

Ответ: 118

Задание 17 #3533
Уровень задания: Равен ЕГЭ

Угол между хордой \(AB\) и касательной \(BC\) к окружности равен \(32^\circ\). Найдите величину меньшей дуги, стягиваемой хордой \(AB\). Ответ дайте в градусах.

Добавить задание в избранное

1 способ

Так как угол между хордой и касательной, проведенными из одной точки окружности, равен половине дуги, заключенной между ними, то меньшая дуга \(\buildrel\smile\over{AB}\) равна \(2\cdot 32^\circ=64^\circ\).

 

2 способ

Так как радиус, проведенный в точку касания, перпендикулярен касательной, то \(\angle OBC=90^\circ\). Следовательно, \(\angle OBA=90^\circ-32^\circ=58^\circ\). Так как \(OB=OA\) – радиусы, то \(\triangle OBA\) равнобедренный, следовательно, \(\angle AOB=180^\circ -2\cdot 58^\circ=64^\circ\). Так как дуга равна центральному углу, опирающемуся на нее, то меньшая дуга \(\buildrel\smile\over{AB}\) равна \(\angle AOB\) и равна \(64^\circ\).

Ответ: 64

Задание 18 #3532
Уровень задания: Равен ЕГЭ

Хорда \(AB\) стягивает дугу окружности в \(92^\circ\). Найдите угол \(ABC\) между этой хордой и касательной к окружности, проведенной через точку \(B\). Ответ дайте в градусах.

Добавить задание в избранное

Так как угол между хордой и касательной, проведенными из одной точки окружности, равен половине дуги, заключенной между ними, то \(\angle ABC=0,5\cdot 92^\circ=46^\circ\).

Ответ: 46

Задание 19 #2168
Уровень задания: Сложнее ЕГЭ

Из точки \(A\) на окружности проведены две прямые, пересекающие повторно окружность в точках \(B\) и \(C\), причем оказалось, что \(AC\) – диаметр, равный \(10\). Найдите длину отрезка \(AB\), если угол между этими прямыми равен \(60^\circ\).

Добавить задание в избранное

Рассмотрим картинку:


 

Рассмотрим \(\triangle ABC\): он прямоугольный (\(\angle B=90^\circ\), т.к. опирается на диаметр), следовательно, \(\angle C=90^\circ-\angle A=30^\circ\). Катет \(AB\), лежащий против угла \(30^\circ\), равен половине гипотенузы \(AC\), то есть равен \(5\).

Ответ: 5

Задание 20 #2167
Уровень задания: Сложнее ЕГЭ

Из точки \(A\) вне окружности проведены две секущие к окружности, угол между которыми равен \(11^\circ\). Первая секущая пересекла окружность в точках \(K_1\) и \(L_1\), вторая — в точках \(K_2\) и \(L_2\), причем \(K_1L_1=K_2L_2\) и дуга \(\buildrel\smile\over{K_1L_1}\), меньшая полуокружности, равна \(95^\circ\).

 

Найдите меньшую из дуг, заключенных между данными секущими.

Добавить задание в избранное

Рассмотрим картинку:


 

Т.к. угол, образованный двумя такими секущими, равен полуразности дуг, заключенных между ними, то

\[\angle A=0,5\left(\alpha-\beta\right)=11^\circ \qquad (1)\]

Т.к. равные хорды стягивают равные дуги, то (меньшая полуокружности) дуга \(\buildrel\smile\over{K_2L_2}=95^\circ\). Вся окружность равна \(360^\circ\), следовательно,

\[\alpha+\beta+2\cdot 95^\circ=360^\circ \quad \Rightarrow \quad \alpha+\beta=170^\circ \qquad (2)\]

Решая систему из уравнений \((1)\) и \((2)\), получим, что \(\beta=74^\circ\).

Ответ: 74

Задание 21 #2169
Уровень задания: Сложнее ЕГЭ

На рисунке диаметр \(AB\) пересекает хорду \(PT\) и делит ее пополам, а также пересекает хорду \(KT\). Дуга \(PB\), меньшая полуокружности, равна \(75^\circ\); дуга \(AK\), меньшая полуокружности, равна \(15^\circ\).


 

Найдите угол между прямыми \(AB\) и \(KT\). Ответ дайте в градусах.

Добавить задание в избранное

Рассмотрим картинку:


 

Т.к. диаметр, делящий хорду пополам, перпендикулярен ей, то \(AB\perp PT\). Следовательно, \(\triangle PNB=\triangle TNB\) как прямоугольные по двум катетам (\(PN=TN\), \(NB\) – общий). Следовательно, \(PB=TB\).

 

Т.к. равные хорды стягивают равные дуги, то \(\buildrel\smile\over{TB}=\buildrel\smile\over{PB}=75^\circ\).

 

Тогда угол между хордами \(AB\) и \(KT\) равен полусумме дуг, заключенных между ними, то есть \(0,5\left(15^\circ+75^\circ\right)=45^\circ\). Т.к. нам необходимо найти угол между прямыми (а это обязательно острый угол), то в данном случае он равен углу между данными хордами.

Ответ: 45

1 2 3 4