Математика
Русский язык

11. Сюжетные текстовые задачи

1. Вспоминай формулы по каждой теме
2. Решай новые задачи каждый день
3. Вдумчиво разбирай решения

Задачи на прямолинейное движение (страница 3)

Если тело движется с постоянной скоростью, то пройденное им расстояние удовлетворяет следующей формуле: \[{\large{S=v\cdot t}}\] где \(v\) — его скорость, \(t\) — время, в течение которого оно двигалось.

 

Другие вариации данной формулы: \(v=\dfrac St\) и \(t=\dfrac Sv\)

 

Некоторые частные случаи:

 

\(\blacktriangleright\) Когда два тела движутся навстречу друг другу со скоростями \(v_1\) и \(v_2\) соответственно, то \(v_1+v_2\) — их скорость сближения. Если \(S\) — расстояние между ними на момент начала движения, \(t\) — время, через которое они встретились, то:

 

\(\blacktriangleright\) Когда тела движутся в противоположном направлении (например, из одной точки), то \(v_1+v_2\) — их скорость удаления. Тогда расстояние \(S\) между ними через время \(t\):

 

\(\blacktriangleright\) Когда тела движутся друг за другом, то:
\((1) \quad v_1>v_2\). Тогда первое тело догонит второе через некоторой время \(t\).
\(v_1-v_2\) — скорость сближения. Если \(S\) — расстояние между ними в начале движения, то:



\((2) \quad v_1<v_2\). Тогда первое тело никогда не догонит второе и расстояние между ними будет только увеличиваться.
\(v_2-v_1\) — скорость удаления. Если \(S\) — расстояние между ними на момент начала движения, то через время \(t\) расстояние между ними будет:



\((3) \quad v_1=v_2\). Тогда первое тело никогда не догонит второе, но расстояние между ними всегда будет оставаться одинаковым.

Задание 15
Уровень задания: Равен ЕГЭ

Борис выехал в город из деревни Борисовка на мопеде со скоростью 30 км/ч, но через 90 км его мопед сломался и он был вынужден пройти пешком 10 км до ближайшей деревни Ивановка. Это расстояние Борис шёл со скоростью 5 км/ч. В Ивановке ему посчастливилось взять напрокат велосипед и оставшиеся до города 65 км он проехал со скоростью 13 км/ч. Найдите среднюю скорость Бориса. Ответ дайте в км/ч.

Добавить задание в избранное

По определению средняя скорость – это отношение всего пути ко времени, затраченному на весь путь. Весь путь Бориса составляет \(90 + 10 + 65 = 165\) км.

Время, которое Борис потратил на этот путь, равно \(90 : 30 + 10 : 5 + 65 : 13 = 10\) ч. Тогда средняя скорость Бориса равна \(165 : 10 = 16,5\) км/ч.

Ответ: 16,5

Задание 16
Уровень задания: Равен ЕГЭ

Два брата пробежали марафон длинной 42 километра. Оба брата бежали марафон с постоянной скоростью, причём скорость младшего была на 1 км/ч больше, чем скорость старшего, в результате чего он прибыл к финишу на 1 час раньше. С какой скоростью бежал старший из братьев? Ответ дайте в км/ч.

Добавить задание в избранное

Пусть \(v\) км/ч – скорость старшего брата.

Тогда время, за которое старший брат пробежал марафон, равно \[\dfrac{42}{v},\] а время младшего брата \[\dfrac{42}{v + 1}.\]

Так как младший брат пробежал марафон на 1 час быстрее, чем старший, то:

\[\dfrac{42}{v} = \dfrac{42}{v + 1} + 1\qquad\Leftrightarrow\qquad 42(v + 1) = 42v + v(v + 1)\] – при \(v \neq 0\), \(v \neq -1\), что равносильно \(v^2 + v - 42 = 0\) при \(v \neq 0\), \(v \neq -1\). Откуда находим \(v_1 = 6, \ v_2 = -7\). Таким образом, скорость старшего брата \(6\) км/ч.

Ответ: 6

Задание 17
Уровень задания: Равен ЕГЭ

Два брата пробежали марафон длиной 42 километра. Оба брата бежали марафон с постоянной скоростью, причём скорость младшего была на 1 км/ч больше, чем скорость старшего, в результате чего он прибыл к финишу на 1 час раньше. С какой скоростью бежал старший из братьев? Ответ дайте в км/ч.

Добавить задание в избранное

Пусть \(v\) км/ч – скорость старшего брата.

Тогда время, за которое старший брат пробежал марафон, равно \[\dfrac{42}{v},\] а время младшего брата \[\dfrac{42}{v + 1}.\]

Так как младший брат пробежал марафон на 1 час быстрее, чем старший, то:

\[\dfrac{42}{v} = \dfrac{42}{v + 1} + 1\qquad\Leftrightarrow\qquad 42(v + 1) = 42v + v(v + 1)\] – при \(v \neq 0\), \(v \neq -1\), что равносильно \(v^2 + v - 42 = 0\) при \(v \neq 0\), \(v \neq -1\). Откуда находим \(v_1 = 6, \ v_2 = -7\). Таким образом, скорость старшего брата \(6\) км/ч.

Ответ: 6

Задание 18
Уровень задания: Равен ЕГЭ

Из пункта А в пункт В вышел турист. Одновременно с этим из пункта В в пункт А выбежал бегун. Турист шёл весь путь с постоянной скоростью. Бегун бежал первую треть пути из А в В со скоростью 10 км/ч, а всё оставшееся расстояние со скоростью в два раза большей, чем скорость туриста. Найдите скорость туриста, если до места встречи с бегуном он успел пройти треть пути из А в В. Ответ дайте в км/ч.

Добавить задание в избранное

Пусть S км – расстояние между А и В,

\(v\) км/ч – скорость туриста.

Тогда время, которое турист шёл до места встречи, равно \[\dfrac{\frac{1}{3}S}{v},\] время, которое бегун потратил на первую треть пути, равно \[\dfrac{\frac{1}{3}S}{10},\] а время, которое бегун потратил на вторую треть пути (то есть на путь до места встречи), равно \[\dfrac{\frac{1}{3}S}{2v}.\]

Так как турист и бегун начали движение одновременно, то \[\dfrac{\frac{1}{3}S}{v} = \dfrac{\frac{1}{3}S}{10} + \dfrac{\frac{1}{3}S}{2v}\qquad\Leftrightarrow\qquad \dfrac{10S}{30v} = \dfrac{vS}{30v} + \dfrac{5S}{30v},\] откуда получаем \(v = 5\) км/ч.

Ответ: 5

Задание 19
Уровень задания: Равен ЕГЭ

Из пункта А в пункт В выехал мотоциклист. Через полчаса после прибытия в B он выехал обратно и одновременно с этим навстречу ему выехал второй мотоциклист из А. Из-за поломки скорость первого мотоциклиста на обратном пути уменьшилась в 3 раза по сравнению с первоначальной. Скорость второго мотоциклиста оказалась на 20 км/ч больше, чем первоначальная скорость первого. Время, через которое произошла встреча, оказалось в два раза меньше, чем время, которое первый потратил на дорогу из А в В. Найдите скорость второго мотоциклиста в км/ч.

Добавить задание в избранное

Пусть t ч – время, которое затратил первый мотоциклист на путь из А в В,

\(v\) км/ч – первоначальная скорость первого мотоциклиста.

Тогда расстояние между пунктами А и В равно \(v \cdot t\) км, расстояние, которое проехал первый мотоциклист из В до места встречи, равно \[\dfrac{1}{3}v \cdot 0,5 t\ \text{км},\] а расстояние, которое проехал второй мотоциклист из А до места встречи, равно \[(v + 20)\cdot 0,5 t\ \text{км}.\]

Так как сумма расстояний, которые они одновременно проехали до места встречи, равна расстоянию от А до В, то

\[vt = \dfrac{1}{3}v \cdot 0,5 t + (v + 20)\cdot 0,5 t\qquad\Leftrightarrow\qquad \dfrac{1}{3}vt = 10t,\] откуда находим \(v = 30\) и, следовательно, скорость второго мотоциклиста равна \(v + 20 = 50\) км/ч.

Ответ: 50

Задание 20
Уровень задания: Равен ЕГЭ

Из двух городов, расстояние между которыми равно 840 км, одновременно навстречу друг другу выехали два автомобилиста. Скорость первого 70 км/ч, а скорость второго 60 км/ч. Через сколько часов они встретились, если известно, что автомобиль первого автомобилиста сломался на полпути между этими городами и на его починку пришлось потратить час.

Добавить задание в избранное

Половина расстояния между городами 420 км. Это расстояние первый автомобилист преодолел за 6 часов, а второй автомобилист за 7 часов.

Так как первый сломался на полпути между городами, то через 7 часов после начала движения он также был на полпути между городами, то есть, через 7 часов они встретились.

Ответ: 7

Задание 21
Уровень задания: Равен ЕГЭ

Если два велосипедиста стартуют из одной точки в одном направлении, то через 6 часов расстояние между ними будет равно 48 км. На сколько километров назад должен отъехать более быстрый велосипедист (до начала движения), чтобы догнать менее быстрого через 3,5 часа, если скорость менее быстрого 10 км/ч?

Добавить задание в избранное



Пусть \(x\) км/ч – скорость быстрого (следовательно, \(x>10\)). Тогда \(x-10\) км/ч – скорость, с которой быстрый удаляется от медленного. Значит, за 6 часов он удалится от медленного на \(6\cdot(x-10)\) км, следовательно, \(6(x-10)=48\), откуда \(x=18\).



За 3,5 ч медленный пройдет 35 км, следовательно, если быстрому нужно отъехать назад на \(s\) км, то он должен за 3,5 ч пройти \(s+35\) км. Следовательно, \(18\cdot 3,5=s+35\), откуда \(s=28\).

Ответ: 28

1 2 3 4 5